These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9555063)

  • 1. Dopamine levels of two classes of vesicles are differentially depleted by amphetamine.
    Anderson BB; Chen G; Gutman DA; Ewing AG
    Brain Res; 1998 Mar; 788(1-2):294-301. PubMed ID: 9555063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple classes of catecholamine vesicles observed during exocytosis from the Planorbis cell body.
    Chen G; Ewing AG
    Brain Res; 1995 Dec; 701(1-2):167-74. PubMed ID: 8925280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport.
    Sulzer D; Chen TK; Lau YY; Kristensen H; Rayport S; Ewing A
    J Neurosci; 1995 May; 15(5 Pt 2):4102-8. PubMed ID: 7751968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical monitoring of bursting exocytotic events from the giant dopamine neuron of Planorbis corneus.
    Chen G; Gutman DA; Zerby SE; Ewing AG
    Brain Res; 1996 Sep; 733(1):119-24. PubMed ID: 8891256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical profiles and monitoring dynamics at an individual nerve cell in Planorbis corneus with electrochemical detection.
    Anderson BB; Ewing AG
    J Pharm Biomed Anal; 1999 Feb; 19(1-2):15-32. PubMed ID: 10698565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of l-amphetamine on the central neurons of the snail.
    Huang SS; Chuang YC; Chen YH; Tsai MC
    Gen Pharmacol; 1999 Mar; 32(3):381-92. PubMed ID: 10211595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of two distributions of vesicle radius in the dopamine neuron of Planorbis corneus from electrochemical data.
    Anderson BB; Chen G; Gutman DA; Ewing AG
    J Neurosci Methods; 1999 May; 88(2):153-61. PubMed ID: 10389661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual differences in dopamine release but not rotational behavior correlate with extracellular amphetamine levels in caudate putamen in unlesioned rats.
    Clausing P; Bloom D; Newport GD; Holson RR; Slikker W; Bowyer JF
    Psychopharmacology (Berl); 1996 Oct; 127(3):187-94. PubMed ID: 8912396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphetamine reduces vesicular dopamine content in dexamethasone-differentiated PC12 cells only following L-DOPA exposure.
    Hondebrink L; Meulenbelt J; Timmerman JG; van den Berg M; Westerink RH
    J Neurochem; 2009 Oct; 111(2):624-33. PubMed ID: 19702656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adderall produces increased striatal dopamine release and a prolonged time course compared to amphetamine isomers.
    Joyce BM; Glaser PE; Gerhardt GA
    Psychopharmacology (Berl); 2007 Apr; 191(3):669-77. PubMed ID: 17031708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in the cellular mechanism underlying the effects of amphetamine on prepulse inhibition in apomorphine-susceptible and apomorphine-unsusceptible rats.
    van der Elst MC; Wunderink YS; Ellenbroek BA; Cools AR
    Psychopharmacology (Berl); 2007 Jan; 190(1):93-102. PubMed ID: 17031706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dopamine mechanism is implied in the acquisition and expression of amphetamine and stress-induced effects observed in the lymphocyte subpopulations.
    Assis MA; Pacchioni AM; Collino C; Paz MC; Sotomayor C; Basso AM; Cancela LM
    Eur J Pharmacol; 2008 Apr; 584(2-3):405-14. PubMed ID: 18339370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation and quantitation of exocytosis from the cell body of a fully developed neuron in Planorbis corneus.
    Chen G; Gavin PF; Luo G; Ewing AG
    J Neurosci; 1995 Nov; 15(11):7747-55. PubMed ID: 7472525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reserpine attenuates D-amphetamine and MDMA-induced transmitter release in vivo: a consideration of dose, core temperature and dopamine synthesis.
    Sabol KE; Seiden LS
    Brain Res; 1998 Sep; 806(1):69-78. PubMed ID: 9739110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diazepam Inhibits Electrically Evoked and Tonic Dopamine Release in the Nucleus Accumbens and Reverses the Effect of Amphetamine.
    Gomez-A A; Fiorenza AM; Boschen SL; Sugi AH; Beckman D; Ferreira ST; Lee K; Blaha CD; Da Cunha C
    ACS Chem Neurosci; 2017 Feb; 8(2):300-309. PubMed ID: 28038309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine in the medial prefrontal cortex controls genotype-dependent effects of amphetamine on mesoaccumbens dopamine release and locomotion.
    Ventura R; Alcaro A; Cabib S; Conversi D; Mandolesi L; Puglisi-Allegra S
    Neuropsychopharmacology; 2004 Jan; 29(1):72-80. PubMed ID: 12968132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decrease of lymphoproliferative response by amphetamine is mediated by dopamine from the nucleus accumbens: influence on splenic met-enkephalin levels.
    Assis MA; Valdomero A; GarcĂ­a-Keller C; Sotomayor C; Cancela LM
    Brain Behav Immun; 2011 May; 25(4):647-57. PubMed ID: 21237264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.
    Covey DP; Bunner KD; Schuweiler DR; Cheer JF; Garris PA
    Eur J Neurosci; 2016 Jun; 43(12):1661-73. PubMed ID: 27038339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry.
    Omiatek DM; Bressler AJ; Cans AS; Andrews AM; Heien ML; Ewing AG
    Sci Rep; 2013; 3():1447. PubMed ID: 23486177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential activation of dopamine release in the nucleus accumbens core and shell after acute or repeated amphetamine injections: a comparative study in the Roman high- and low-avoidance rat lines.
    Giorgi O; Piras G; Lecca D; Corda MG
    Neuroscience; 2005; 135(3):987-98. PubMed ID: 16154292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.