BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9555095)

  • 21. Purification of NADPH-dependent enoyl-CoA reductase involved in the malonyl-CoA dependent fatty acid elongation system of Mycobacterium smegmatis.
    Kikuchi S; Kusaka T
    J Biochem; 1984 Sep; 96(3):841-8. PubMed ID: 6501266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding of [14C]malonyl-CoA to rat liver mitochondria after blocking of the active site of carnitine palmitoyltransferase I. Displacement of low-affinity binding by palmitoyl-CoA.
    Grantham BD; Zammit VA
    Biochem J; 1986 Jan; 233(2):589-93. PubMed ID: 3954755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory effect of very-long-chain monounsaturated fatty-acyl-CoAs on the elongation of long-chain fatty acid in swine cerebral microsomes.
    Saitoh T; Yoshida S; Takeshita M
    Biochim Biophys Acta; 1988 Jun; 960(3):410-6. PubMed ID: 3382682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatty acyl-CoA elongation in Blatella germanica integumental microsomes.
    Juárez MP
    Arch Insect Biochem Physiol; 2004 Aug; 56(4):170-8. PubMed ID: 15274178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and characterization of 2-enoyl-CoA reductase of Mycobacterium smegmatis.
    Shimakata T; Kusaka T
    J Biochem; 1981 Apr; 89(4):1075-80. PubMed ID: 7251572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arginyl residues of adrenodoxin reductase as the anion recognition site for 2'-phosphate group of NADP+1.
    Nonaka Y; Sugiyama T; Yamano T
    J Biochem; 1982 Dec; 92(6):1693-701. PubMed ID: 7161255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Essential arginine residues in the active sites of propionyl CoA carboxylase and beta-methylcrotonyl CoA carboxylase.
    Wolf B; Kalousek F; Rosenberg LE
    Enzyme; 1979; 24(5):302-6. PubMed ID: 510274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro inhibition of carrot chalcone synthase by 3'-nucleotidase: the role of the 3'-phosphate group of malonyl-coenzyme A in flavonoid biosynthesis.
    Hinderer W; Seitz HU
    Arch Biochem Biophys; 1986 Apr; 246(1):217-24. PubMed ID: 3008651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A continuous coupled enzyme assay for bacterial malonyl-CoA:acyl carrier protein transacylase (FabD).
    Molnos J; Gardiner R; Dale GE; Lange R
    Anal Biochem; 2003 Aug; 319(1):171-6. PubMed ID: 12842120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stereospecific incorporation of hydrogens from NADPH in elongation of very long fatty acyl-CoA by swine cerebral microsomes.
    Yoshida S; Takeshita M; Kawaguchi A
    Biochem Biophys Res Commun; 1984 Oct; 124(2):322-8. PubMed ID: 6497886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding of malonyl-CoA to isolated mitochondria. Evidence for high- and low-affinity sites in liver and heart and relationship to inhibition of carnitine palmitoyltransferase activity.
    Bird MI; Saggerson ED
    Biochem J; 1984 Sep; 222(3):639-47. PubMed ID: 6487267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatty acid synthesis in mitochondria of Euglena gracilis.
    Inui H; Miyatake K; Nakano Y; Kitaoka S
    Eur J Biochem; 1984 Jul; 142(1):121-6. PubMed ID: 6146525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of catalytic activity of a multifunctional polyketide biosynthetic enzyme, 6-hydroxymellein synthase, by interaction between NADPH and phenylglyoxal-sensitive amino acid residue at the reaction center.
    Kurosaki F; Togashi K; Arisawa M
    Biochim Biophys Acta; 2001 Sep; 1549(1):51-60. PubMed ID: 11566368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical modification of arginine and lysine residues in coenzyme-binding domain of carbonyl reductase from rabbit kidney: indomethacin affords a significant protection against inactivation of the enzyme by phenylglyoxal.
    Higuchi T; Imamura Y; Otagiri M
    Biochim Biophys Acta; 1994 Jan; 1199(1):81-6. PubMed ID: 8280759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arachidoyl- and arachidonoyl-CoA elongation mechanism in swine cerebral microsomes.
    Yoshida S; Takeshita M
    Biochim Biophys Acta; 1984 Aug; 795(1):137-46. PubMed ID: 6466693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The presence of essential arginine residues at the active sites of citrate lyase complex from Klebsiella aerogenes.
    Subramanian S; Basu A; SivaRaman C
    Biochem Biophys Res Commun; 1983 Mar; 111(2):490-7. PubMed ID: 6838572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence that oleoyl-CoA and ATP-dependent elongations coexist in rapeseed (Brassica napus L.).
    Domergue F; Chevalier S; Santarelli X; Cassagne C; Lessire R
    Eur J Biochem; 1999 Jul; 263(2):464-70. PubMed ID: 10406955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen transfer by NADPH-dependent reductases in elongation of very-long-chain saturated and polyunsaturated fatty-acyl-CoA in swine cerebral microsomes.
    Yoshida S; Saitoh T; Takeshita M
    Biochim Biophys Acta; 1988 Feb; 958(3):361-7. PubMed ID: 3342246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implication of arginyl residues in aminoacyl-tRNA binding to ribosomes.
    Hernández F; López-Rivas A; Pintor-Toro JA; Palacián E
    Eur J Biochem; 1982 Mar; 123(1):95-8. PubMed ID: 6175517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A functional arginine residue in the vacuolar H(+)-ATPase of higher plants.
    Bennett AB; Borcherts K
    Biochim Biophys Acta; 1990 Mar; 1023(1):119-23. PubMed ID: 1690574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.