BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9555102)

  • 1. Hypoxia and contractions do not utilize the same signaling mechanism in stimulating skeletal muscle glucose transport.
    Wojtaszewski JF; Laustsen JL; Derave W; Richter EA
    Biochim Biophys Acta; 1998 May; 1380(3):396-404. PubMed ID: 9555102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phorbol esters stimulate muscle glucose transport by a mechanism distinct from the insulin and hypoxia pathways.
    Hansen PA; Corbett JA; Holloszy JO
    Am J Physiol; 1997 Jul; 273(1 Pt 1):E28-36. PubMed ID: 9252476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calphostin C is an inhibitor of contraction, but not insulin-stimulated glucose transport, in skeletal muscle.
    Ihlemann J; Galbo H; Ploug T
    Acta Physiol Scand; 1999 Sep; 167(1):69-75. PubMed ID: 10519979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle.
    Lee AD; Hansen PA; Holloszy JO
    FEBS Lett; 1995 Mar; 361(1):51-4. PubMed ID: 7890039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle.
    Wojtaszewski JF; Hansen BF; Ursø B; Richter EA
    J Appl Physiol (1985); 1996 Oct; 81(4):1501-9. PubMed ID: 8904560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle.
    Derave W; Hespel P
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):255-63. PubMed ID: 9925895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin.
    Lund S; Holman GD; Schmitz O; Pedersen O
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):5817-21. PubMed ID: 7597034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local hindlimb antioxidant infusion does not affect muscle glucose uptake during in situ contractions in rat.
    Merry TL; Dywer RM; Bradley EA; Rattigan S; McConell GK
    J Appl Physiol (1985); 2010 May; 108(5):1275-83. PubMed ID: 20203065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms associated with hypoxia- and contraction-mediated glucose transport in muscle are fibre-dependent.
    Fluckey JD; Ploug T; Galbo H
    Acta Physiol Scand; 1999 Sep; 167(1):83-7. PubMed ID: 10519981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine phosphatase inhibitors, vanadate and pervanadate, stimulate glucose transport and GLUT translocation in muscle cells by a mechanism independent of phosphatidylinositol 3-kinase and protein kinase C.
    Tsiani E; Bogdanovic E; Sorisky A; Nagy L; Fantus IG
    Diabetes; 1998 Nov; 47(11):1676-86. PubMed ID: 9792535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway.
    Etgen GJ; Fryburg DA; Gibbs EM
    Diabetes; 1997 Nov; 46(11):1915-9. PubMed ID: 9356048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of AMPK activation on muscle glucose metabolism in conscious rats.
    Bergeron R; Russell RR; Young LH; Ren JM; Marcucci M; Lee A; Shulman GI
    Am J Physiol; 1999 May; 276(5):E938-44. PubMed ID: 10329989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle.
    Wright DC; Geiger PC; Holloszy JO; Han DH
    Am J Physiol Endocrinol Metab; 2005 Jun; 288(6):E1062-6. PubMed ID: 15657088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport.
    Yeh JI; Gulve EA; Rameh L; Birnbaum MJ
    J Biol Chem; 1995 Feb; 270(5):2107-11. PubMed ID: 7836438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A peroxovanadium compound stimulates muscle glucose transport as powerfully as insulin and contractions combined.
    Nolte LA; Han DH; Hansen PA; Hucker KA; Holloszy JO
    Diabetes; 2003 Aug; 52(8):1918-25. PubMed ID: 12882906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle.
    Hespel P; Vergauwen L; Vandenberghe K; Richter EA
    Diabetes; 1995 Feb; 44(2):210-5. PubMed ID: 7859943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin.
    Fisher JS; Gao J; Han DH; Holloszy JO; Nolte LA
    Am J Physiol Endocrinol Metab; 2002 Jan; 282(1):E18-23. PubMed ID: 11739078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are tyrosine kinases involved in mediating contraction-stimulated muscle glucose transport?
    Wright DC; Geiger PC; Han DH; Holloszy JO
    Am J Physiol Endocrinol Metab; 2006 Jan; 290(1):E123-E128. PubMed ID: 16159907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of alkaline pH on the stimulation of glucose transport in rat skeletal muscle.
    Ren JM; Youn JH; Gulve EA; Henriksen EJ; Holloszy JO
    Biochim Biophys Acta; 1993 Feb; 1145(2):199-204. PubMed ID: 8431452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfused rat hindlimb is suitable for skeletal muscle glucose transport measurements.
    Wojtaszewski JF; Jakobsen AB; Ploug T; Richter EA
    Am J Physiol; 1998 Jan; 274(1):E184-91. PubMed ID: 9458764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.