BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9555102)

  • 41. Phorbol esters affect skeletal muscle glucose transport in a fiber type-specific manner.
    Wright DC; Geiger PC; Rheinheimer MJ; Han DH; Holloszy JO
    Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E305-9. PubMed ID: 15053989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of force development on contraction induced glucose transport in fast twitch rat muscle.
    Ihlemann J; Ploug T; Galbo H
    Acta Physiol Scand; 2001 Apr; 171(4):439-44. PubMed ID: 11421859
    [TBL] [Abstract][Full Text] [Related]  

  • 43. More tetanic contractions are required for activating glucose transport maximally in trained muscle.
    Kawanaka K; Tabata I; Higuchi M
    J Appl Physiol (1985); 1997 Aug; 83(2):429-33. PubMed ID: 9262437
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increased muscle glucose uptake during contractions: no need for insulin.
    Ploug T; Galbo H; Richter EA
    Am J Physiol; 1984 Dec; 247(6 Pt 1):E726-31. PubMed ID: 6391198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential effect of maturation on insulin- vs. contraction-stimulated glucose transport in Zucker rats.
    Dolan PL; Boyd SG; Dohm GL
    Am J Physiol; 1995 Jun; 268(6 Pt 1):E1154-60. PubMed ID: 7611391
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Circulating palmitate uptake and oxidation are not altered by glycogen depletion in contracting skeletal muscle.
    Turcotte LP; Hespel P; Richter EA
    J Appl Physiol (1985); 1995 Apr; 78(4):1266-72. PubMed ID: 7615432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insulin and contraction directly stimulate UCP2 and UCP3 mRNA expression in rat skeletal muscle in vitro.
    Pedersen SB; Lund S; Buhl ES; Richelsen B
    Biochem Biophys Res Commun; 2001 Apr; 283(1):19-25. PubMed ID: 11322761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of stimulation frequency on contraction-induced glucose transport in rat skeletal muscle.
    Ihlemann J; Ploug T; Hellsten Y; Galbo H
    Am J Physiol Endocrinol Metab; 2000 Oct; 279(4):E862-7. PubMed ID: 11001769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle.
    Ai H; Ihlemann J; Hellsten Y; Lauritzen HP; Hardie DG; Galbo H; Ploug T
    Am J Physiol Endocrinol Metab; 2002 Jun; 282(6):E1291-300. PubMed ID: 12006359
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 5'-aminoimidazole-4-carboxyamide-ribonucleoside-activated glucose transport is not prevented by nitric oxide synthase inhibition in rat isolated skeletal muscle.
    Stephens TJ; Canny BJ; Snow RJ; McConell GK
    Clin Exp Pharmacol Physiol; 2004 Jul; 31(7):419-23. PubMed ID: 15236627
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: metabolic implications.
    Wojtaszewski JF; Lynge J; Jakobsen AB; Goodyear LJ; Richter EA
    Am J Physiol; 1999 Oct; 277(4):E724-32. PubMed ID: 10516133
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: participation of elements of the insulin signaling pathway.
    Estrada DE; Ewart HS; Tsakiridis T; Volchuk A; Ramlal T; Tritschler H; Klip A
    Diabetes; 1996 Dec; 45(12):1798-804. PubMed ID: 8922368
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insulin signaling: a potential signaling pathway for the stimulatory effect of kaempferitrin on glucose uptake in skeletal muscle.
    Cazarolli LH; Pereira DF; Kappel VD; Folador P; Figueiredo Mdos S; Pizzolatti MG; Silva FR
    Eur J Pharmacol; 2013 Jul; 712(1-3):1-7. PubMed ID: 23458067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glucose metabolism in perfused skeletal muscle. Interaction of insulin and exercise on glucose uptake.
    Berger M; Hagg S; Ruderman NB
    Biochem J; 1975 Jan; 146(1):231-8. PubMed ID: 807202
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Different mechanism for insulin induced and contraction induced increases in skeletal muscle glucose uptake.
    Guarner V; Hernández E; Huerto R; Favier C; Gorostiza P; Valenzuela F
    Life Sci; 1994; 55(16):PL301-5. PubMed ID: 7934624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism of hypoxia-stimulated glucose transport in rat skeletal muscle: potential role of glycogen.
    Reynolds TH; Brozinick JT; Rogers MA; Cushman SW
    Am J Physiol; 1998 May; 274(5):E773-8. PubMed ID: 9612232
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Lithium on the Mechanism of Glucose Transport in Skeletal Muscles.
    Jung S; Koh J; Kim S; Kim K
    J Nutr Sci Vitaminol (Tokyo); 2017; 63(6):365-371. PubMed ID: 29332897
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle.
    Derave W; Ai H; Ihlemann J; Witters LA; Kristiansen S; Richter EA; Ploug T
    Diabetes; 2000 Aug; 49(8):1281-7. PubMed ID: 10923626
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Decreased insulin action on muscle glucose transport after eccentric contractions in rats.
    Asp S; Richter EA
    J Appl Physiol (1985); 1996 Nov; 81(5):1924-8. PubMed ID: 8941511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isoform-specific regulation of 5' AMP-activated protein kinase in skeletal muscle from obese Zucker (fa/fa) rats in response to contraction.
    Barnes BR; Ryder JW; Steiler TL; Fryer LG; Carling D; Zierath JR
    Diabetes; 2002 Sep; 51(9):2703-8. PubMed ID: 12196462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.