BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9555656)

  • 1. Participation of mercuric conjugates of cysteine, homocysteine, and N-acetylcysteine in mechanisms involved in the renal tubular uptake of inorganic mercury.
    Zalups RK; Barfuss DW
    J Am Soc Nephrol; 1998 Apr; 9(4):551-61. PubMed ID: 9555656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basolateral uptake of mercuric conjugates of N-acetylcysteine and cysteine in the kidney involves the organic anion transport system.
    Zalups RK
    J Toxicol Environ Health A; 1998 Sep; 55(1):13-29. PubMed ID: 9747601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminal and basolateral mechanisms involved in the renal tubular uptake of inorganic mercury.
    Zalups RK; Minor KH
    J Toxicol Environ Health; 1995 Sep; 46(1):73-100. PubMed ID: 7666495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basolateral uptake of inorganic mercury in the kidney.
    Zalups RK
    Toxicol Appl Pharmacol; 1998 Jul; 151(1):192-9. PubMed ID: 9705903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nephrotoxicity of inorganic mercury co-administrated with L-cysteine.
    Zalups RK; Barfuss DW
    Toxicology; 1996 May; 109(1):15-29. PubMed ID: 8619249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced renal outer medullary uptake of mercury associated with uninephrectomy: implication of a luminal mechanism.
    Zalups RK
    J Toxicol Environ Health; 1997 Feb; 50(2):173-94. PubMed ID: 9048960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal disposition of mercury in rats after intravenous injection of inorganic mercury and cysteine.
    Zalups RK; Barfuss DW
    J Toxicol Environ Health; 1995 Apr; 44(4):401-13. PubMed ID: 7723073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of organic anion and amino acid carriers in transport of inorganic mercury in rat renal basolateral membrane vesicles: influence of compensatory renal growth.
    Lash LH; Hueni SE; Putt DA; Zalups RK
    Toxicol Sci; 2005 Dec; 88(2):630-44. PubMed ID: 16162843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal organic anion transport system: a mechanism for the basolateral uptake of mercury-thiol conjugates along the pars recta of the proximal tubule.
    Zalups RK; Barfuss DW
    Toxicol Appl Pharmacol; 2002 Aug; 182(3):234-43. PubMed ID: 12183103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small aliphatic dicarboxylic acids inhibit renal uptake of administered mercury.
    Zalups RK; Barfuss DW
    Toxicol Appl Pharmacol; 1998 Jan; 148(1):183-93. PubMed ID: 9465278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status.
    Zalups RK; Lash LH
    Toxicol Appl Pharmacol; 2006 Jul; 214(1):88-97. PubMed ID: 16466761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous coexposure to inorganic mercury and cadmium: a study of the renal and hepatic disposition of mercury and cadmium.
    Zalups RK; Barfuss DW
    J Toxicol Environ Health A; 2002 Oct; 65(19):1471-90. PubMed ID: 12396877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular homology and the luminal transport of Hg2+ in the renal proximal tubule.
    Cannon VT; Barfuss DW; Zalups RK
    J Am Soc Nephrol; 2000 Mar; 11(3):394-402. PubMed ID: 10703663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pretreatment with p-aminohippurate inhibits the renal uptake and accumulation of injected inorganic mercury in the rat.
    Zalups RK; Barfuss DW
    Toxicology; 1995 Nov; 103(1):23-35. PubMed ID: 8525487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion of glutathione in the kidney and the renal disposition of administered inorganic mercury.
    Zalups RK; Lash LH
    Drug Metab Dispos; 1997 Apr; 25(4):516-23. PubMed ID: 9107552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversion or prevention of biliary outflow from the liver diminishes the renal uptake of injected inorganic mercury.
    Zalups RK; Barfuss DW
    Drug Metab Dispos; 1996 Apr; 24(4):480-6. PubMed ID: 8801064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intestinal handling of mercury in the rat: implications of intestinal secretion of inorganic mercury following biliary ligation or cannulation.
    Zalups RK
    J Toxicol Environ Health A; 1998 Apr; 53(8):615-36. PubMed ID: 9572160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of 2,3-dimercaptopropane-1-sulfonate (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) on the renal disposition of mercury in normal and uninephrectomized rats exposed to inorganic mercury.
    Zalups RK
    J Pharmacol Exp Ther; 1993 Nov; 267(2):791-800. PubMed ID: 8246154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of action of 2,3-dimercaptopropane-1-sulfonate and the transport, disposition, and toxicity of inorganic mercury in isolated perfused segments of rabbit proximal tubules.
    Zalups RK; Parks LD; Cannon VT; Barfuss DW
    Mol Pharmacol; 1998 Aug; 54(2):353-63. PubMed ID: 9687577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autometallographic localization of inorganic mercury in the kidneys of rats: effect of unilateral nephrectomy and compensatory renal growth.
    Zalups RK
    Exp Mol Pathol; 1991 Feb; 54(1):10-21. PubMed ID: 1995316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.