These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 9556139)
1. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Fazzalari NL; Forwood MR; Smith K; Manthey BA; Herreen P Bone; 1998 Apr; 22(4):381-8. PubMed ID: 9556139 [TBL] [Abstract][Full Text] [Related]
2. Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution. Fazzalari NL; Kuliwaba JS; Forwood MR Bone; 2002 Dec; 31(6):697-702. PubMed ID: 12531564 [TBL] [Abstract][Full Text] [Related]
3. Quantitative relationships between microdamage and cancellous bone strength and stiffness. Hernandez CJ; Lambers FM; Widjaja J; Chapa C; Rimnac CM Bone; 2014 Sep; 66():205-13. PubMed ID: 24928495 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional confocal images of microdamage in cancellous bone. Fazzalari NL; Forwood MR; Manthey BA; Smith K; Kolesik P Bone; 1998 Oct; 23(4):373-8. PubMed ID: 9763150 [TBL] [Abstract][Full Text] [Related]
5. Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: implication for fatigue microdamage, bone microarchitecture, and biomechanical properties. Li ZC; Dai LY; Jiang LS; Qiu S Arthritis Rheum; 2012 Dec; 64(12):3955-62. PubMed ID: 23124609 [TBL] [Abstract][Full Text] [Related]
6. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces. Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609 [TBL] [Abstract][Full Text] [Related]
7. Predictive value of bone mineral density and morphology determined by peripheral quantitative computed tomography for cancellous bone strength of the proximal femur. Wachter NJ; Augat P; Mentzel M; Sarkar MR; Krischak GD; Kinzl L; Claes LE Bone; 2001 Jan; 28(1):133-9. PubMed ID: 11165955 [TBL] [Abstract][Full Text] [Related]
8. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance. Lambers FM; Bouman AR; Rimnac CM; Hernandez CJ PLoS One; 2013; 8(12):e83662. PubMed ID: 24386247 [TBL] [Abstract][Full Text] [Related]
9. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Majumdar S; Kothari M; Augat P; Newitt DC; Link TM; Lin JC; Lang T; Lu Y; Genant HK Bone; 1998 May; 22(5):445-54. PubMed ID: 9600777 [TBL] [Abstract][Full Text] [Related]
10. Does microdamage accumulation affect the mechanical properties of bone? Burr DB; Turner CH; Naick P; Forwood MR; Ambrosius W; Hasan MS; Pidaparti R J Biomech; 1998 Apr; 31(4):337-45. PubMed ID: 9672087 [TBL] [Abstract][Full Text] [Related]
11. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone. Lambers FM; Bouman AR; Tkachenko EV; Keaveny TM; Hernandez CJ J Biomech; 2014 Nov; 47(15):3605-12. PubMed ID: 25458150 [TBL] [Abstract][Full Text] [Related]
12. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Newitt DC; Majumdar S; van Rietbergen B; von Ingersleben G; Harris ST; Genant HK; Chesnut C; Garnero P; MacDonald B Osteoporos Int; 2002 Jan; 13(1):6-17. PubMed ID: 11878456 [TBL] [Abstract][Full Text] [Related]
13. Correlations between structural and mechanical properties of human trabecular femur bone. Nikodem A Acta Bioeng Biomech; 2012; 14(2):37-46. PubMed ID: 22793376 [TBL] [Abstract][Full Text] [Related]
14. [Evaluation of bone structure and quality of ovariectomized rats by microcrack]. Dai RC; Liao EY; Yang C Hunan Yi Ke Da Xue Xue Bao; 2003 Dec; 28(6):591-6. PubMed ID: 15804068 [TBL] [Abstract][Full Text] [Related]
15. Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women with osteoporosis. Stepan JJ; Burr DB; Pavo I; Sipos A; Michalska D; Li J; Fahrleitner-Pammer A; Petto H; Westmore M; Michalsky D; Sato M; Dobnig H Bone; 2007 Sep; 41(3):378-85. PubMed ID: 17597017 [TBL] [Abstract][Full Text] [Related]
16. An investigation of composition, morphology, mechanical properties, and microdamage accumulation of human type 2 diabetic bone. Britton M; Monahan GE; Murphy CG; Kearns SR; Devitt AT; Okwieka A; Jaisson S; Van Gulick L; Beljebbar A; Kerdjoudj H; Schiavi J; Vaughan TJ Bone; 2024 Oct; 187():117190. PubMed ID: 38960297 [TBL] [Abstract][Full Text] [Related]
17. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Ulrich D; van Rietbergen B; Laib A; Rüegsegger P Bone; 1999 Jul; 25(1):55-60. PubMed ID: 10423022 [TBL] [Abstract][Full Text] [Related]
18. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading. Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298 [TBL] [Abstract][Full Text] [Related]
19. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone. Landrigan MD; Li J; Turnbull TL; Burr DB; Niebur GL; Roeder RK Bone; 2011 Mar; 48(3):443-50. PubMed ID: 20951850 [TBL] [Abstract][Full Text] [Related]
20. Predictive value of proximal femoral bone densitometry in determining local orthogonal material properties. Cody DD; McCubbrey DA; Divine GW; Gross GJ; Goldstein SA J Biomech; 1996 Jun; 29(6):753-61. PubMed ID: 9147972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]