BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 9556919)

  • 1. Leucine catabolism in mammary tissue, liver and skeletal muscle of dam rat during lactation and weaning.
    DeSantiago S; Torres N; Tovar AR
    Arch Med Res; 1998; 29(1):25-32. PubMed ID: 9556919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alanine aminotransferase activity in mammary tissue, muscle and liver of dam rat during lactation and weaning.
    Desantiago S; Alemán G; Hernández-Montes H
    Arch Med Res; 1996; 27(4):443-8. PubMed ID: 8987175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of branched-chain amino acid metabolism in the lactating rat.
    DeSantiago S; Torres N; Suryawan A; Tovar AR; Hutson SM
    J Nutr; 1998 Jul; 128(7):1165-71. PubMed ID: 9649601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of liver trans-sulphuration pathway by propargylglycine mimics gene expression changes found in the mammary gland of weaned lactating rats: role of glutathione.
    Zaragozá R; García C; Rus AD; Pallardó FV; Barber T; Torres L; Miralles VJ; Viña JR
    Biochem J; 2003 Aug; 373(Pt 3):825-34. PubMed ID: 12723969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of leucine catabolism by metabolic fuels in mammary epithelial cells.
    Lei J; Feng D; Zhang Y; Dahanayaka S; Li X; Yao K; Wang J; Wu Z; Dai Z; Wu G
    Amino Acids; 2012 Nov; 43(5):2179-89. PubMed ID: 22543725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of intravenous amino acid infusion on leucine oxidation across the mammary gland of the lactating goat.
    Bequette BJ; Backwell FR; MacRae JC; Lobley GE; Crompton LA; Metcalf JA; Sutton JD
    J Dairy Sci; 1996 Dec; 79(12):2217-24. PubMed ID: 9029360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NTP technical report on the toxicity studies of Dibutyl Phthalate (CAS No. 84-74-2) Administered in Feed to F344/N Rats and B6C3F1 Mice.
    Marsman D
    Toxic Rep Ser; 1995 Apr; 30():1-G5. PubMed ID: 12209194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper transport to mammary gland and milk during lactation in rats.
    Donley SA; Ilagan BJ; Rim H; Linder MC
    Am J Physiol Endocrinol Metab; 2002 Oct; 283(4):E667-75. PubMed ID: 12217883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valine, leucine, and isoleucine metabolism by lactating bovine mammary tissue.
    Wohlt JE; Clark JH; Derrig RG; Davis CL
    J Dairy Sci; 1977 Dec; 60(12):1875-82. PubMed ID: 563875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in cathepsin D activity of maternal tissues during lactation and weaning in rats.
    Hernández-Montes H; Escudero I; Villalpando S
    Arch Med Res; 1999; 30(1):10-3. PubMed ID: 10071418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of methylaminoisobutyric acid transport by system A in rat mammary gland.
    Tovar AR; Avila E; DeSantiago S; Torres N
    Metabolism; 2000 Jul; 49(7):873-9. PubMed ID: 10909998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of variation of trans-fatty acid in lactating rats' diet on lipoprotein lipase activity in mammary gland, liver, and adipose tissue.
    Assumpção RP; dos Santos FD; de Mattos Machado Andrade P; Barreto GF; das Graças Tavares do Carmo M
    Nutrition; 2004 Sep; 20(9):806-11. PubMed ID: 15325692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the composition of mammary tissue, liver and muscle of rat dams during lactation and after weaning.
    DeSantiago S; Hernandez Montes H; Flores-Huerta S; Villalpando S
    J Nutr; 1991 Jan; 121(1):37-43. PubMed ID: 1704055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitration of cathepsin D enhances its proteolytic activity during mammary gland remodelling after lactation.
    Zaragozá R; Torres L; García C; Eroles P; Corrales F; Bosch A; Lluch A; García-Trevijano ER; Viña JR
    Biochem J; 2009 Apr; 419(2):279-88. PubMed ID: 19125694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hormonal regulation of leucine catabolism in mammary epithelial cells.
    Lei J; Feng D; Zhang Y; Dahanayaka S; Li X; Yao K; Wang J; Wu Z; Dai Z; Wu G
    Amino Acids; 2013 Sep; 45(3):531-41. PubMed ID: 22707151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An isotope dilution model for partitioning leucine uptake by the liver of the lactating dairy cow.
    France J; Hanigan MD; Reynolds CK; Dijkstra J; Crompton LA; Maas JA; Bequette BJ; Metcalf JA; Lobley GE; MacRae JC; Beever DE
    J Theor Biol; 1999 May; 198(1):121-33. PubMed ID: 10329119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR.
    Lynch CJ; Halle B; Fujii H; Vary TC; Wallin R; Damuni Z; Hutson SM
    Am J Physiol Endocrinol Metab; 2003 Oct; 285(4):E854-63. PubMed ID: 12812918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: effects on plasma amino- and keto-acid concentrations and branched-chain keto-acid dehydrogenase activity.
    Langer S; Scislowski PW; Brown DS; Dewey P; Fuller MF
    Br J Nutr; 2000 Jan; 83(1):49-58. PubMed ID: 10703464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in messenger RNA abundance of amino acid transporters in rat mammary gland during pregnancy, lactation, and weaning.
    Alemán G; López A; Ordaz G; Torres N; Tovar AR
    Metabolism; 2009 May; 58(5):594-601. PubMed ID: 19375580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in tissue abundance and activity of enzymes related to branched-chain amino acid catabolism in dairy cows during early lactation.
    Webb LA; Sadri H; von Soosten D; Dänicke S; Egert S; Stehle P; Sauerwein H
    J Dairy Sci; 2019 Apr; 102(4):3556-3568. PubMed ID: 30712942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.