BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9558020)

  • 1. Biomagnetic 3-dimensional spatial and temporal characterization of electrical activity of human stomach.
    Allescher HD; Abraham-Fuchs K; Dunkel RE; Classen M
    Dig Dis Sci; 1998 Apr; 43(4):683-93. PubMed ID: 9558020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependent component analysis for the magnetogastrographic detection of human electrical response activity.
    Estombelo-Montesco CA; de Araujo DB; Silva Filho AC; Moraes ER; Barros AK; Wakai RT; Baffa O
    Physiol Meas; 2007 Sep; 28(9):1029-44. PubMed ID: 17827651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of gastric electrical control activity from simultaneous MGG/EGG recordings using independent component analysis.
    Irimia A; Gallucci MR; Richards WO; Bradshaw LA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3110-3. PubMed ID: 17946157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical and computational methods for the noninvasive detection of gastric electrical source coupling.
    Irimia A; Bradshaw LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051920. PubMed ID: 15244860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probability-based current dipole localization from biomagnetic fields.
    Scholz B; Schwierz G
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):735-42. PubMed ID: 7927396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects--a correlation study.
    Somarajan S; Muszynski ND; Obioha C; Richards WO; Bradshaw LA
    Physiol Meas; 2012 Jul; 33(7):1171-9. PubMed ID: 22735166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface current density mapping for identification of gastric slow wave propagation.
    Bradshaw LA; Cheng LK; Richards WO; Pullan AJ
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2131-9. PubMed ID: 19403355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-frequency representation of the electrogastrogram--application of the exponential distribution.
    Lin ZY; Chen JD
    IEEE Trans Biomed Eng; 1994 Mar; 41(3):267-75. PubMed ID: 8045579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Electrophysiological Propagation by Multichannel Sensors.
    Bradshaw LA; Kim JH; Somarajan S; Richards WO; Cheng LK
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1751-9. PubMed ID: 26595907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetoenterography (MENG): noninvasive measurement of bioelectric activity in human small intestine.
    Richards WO; Bradshaw LA; Staton DJ; Garrard CL; Liu F; Buchanan S; Wikswo JP
    Dig Dis Sci; 1996 Dec; 41(12):2293-301. PubMed ID: 9011432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of small bowel slow-wave frequencies from noninvasive biomagnetic measurements.
    Erickson JC; Obioha C; Goodale A; Bradshaw LA; Richards WO
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2181-9. PubMed ID: 19497806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of gastric electrical activity using magnetic field measurements: a simulation study.
    Kim JH; Bradshaw LA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2010 Jan; 38(1):177-86. PubMed ID: 19774463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic marker monitoring of esophageal, gastric and duodenal transit of non-disintegrating capsules.
    Weitschies W; Cardini D; Karaus M; Trahms L; Semmler W
    Pharmazie; 1999 Jun; 54(6):426-30. PubMed ID: 10399189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomagnetic signatures of uncoupled gastric musculature.
    Bradshaw LA; Irimia A; Sims JA; Richards WO
    Neurogastroenterol Motil; 2009 Jul; 21(7):778-e50. PubMed ID: 19222760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Every slow-wave impulse is associated with motor activity of the human stomach.
    Hocke M; Schöne U; Richert H; Görnert P; Keller J; Layer P; Stallmach A
    Am J Physiol Gastrointest Liver Physiol; 2009 Apr; 296(4):G709-16. PubMed ID: 19095766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomagnetic multi-channel systems. Principles and application in cardiology.
    Reichenberger H; Schneider S; Moshage W; Weismüller P
    Clin Physiol; 1992 May; 12(3):325-33. PubMed ID: 1606815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Spatial Signatures of Gastric Electrical Activity Using Biomagnetic Source Localization.
    Avci R; Eichler CE; Paskaranandavadivel N; Du P; Angeli-Gordon TR; Bradshaw LA; Cheng LK
    IEEE Trans Biomed Eng; 2022 Nov; 69(11):3551-3558. PubMed ID: 35560086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of ACB in vitro and in vivo as a biomagnetic method for measuring stomach contraction.
    Américo MF; Marques RG; Zandoná EA; Andreis U; Stelzer M; Corá LA; Oliveira RB; Miranda JR
    Neurogastroenterol Motil; 2010 Dec; 22(12):1340-4, e374. PubMed ID: 20874731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive assessment of the effects of glucagon on the gastric slow wave.
    Bradshaw LA; Sims JA; Richards WO
    Am J Physiol Gastrointest Liver Physiol; 2007 Nov; 293(5):G1029-38. PubMed ID: 17884978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.