BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9558073)

  • 1. Cross-reactivity in murine fluoroquinolone photoallergy: exclusive usage of TCR Vbeta13 by immune T cells that recognize fluoroquinolone-photomodified cells.
    Tokura Y; Seo N; Yagi H; Furukawa F; Takigawa M
    J Immunol; 1998 Apr; 160(8):3719-28. PubMed ID: 9558073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinolone photoallergy: photosensitivity dermatitis induced by systemic administration of photohaptenic drugs.
    Tokura Y
    J Dermatol Sci; 1998 Sep; 18(1):1-10. PubMed ID: 9747656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of antigenic quinolone photoadducts on Langerhans cells initiates photoallergy to systemically administered quinolone in mice.
    Ohshima A; Seo N; Takigawa M; Tokura Y
    J Invest Dermatol; 2000 Mar; 114(3):569-75. PubMed ID: 10692119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TCRV beta 7+ Th2 cells mediate UVB-induced suppression of murine contact photosensitivity by releasing IL-10.
    Yagi H; Tokura Y; Wakita H; Furukawa F; Takigawa M
    J Immunol; 1996 Mar; 156(5):1824-31. PubMed ID: 8596033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of eosinophil-infiltrating drug photoallergy in mice.
    Nishio D; Nakashima D; Mori T; Kabashima K; Tokura Y
    J Dermatol Sci; 2009 Jul; 55(1):34-9. PubMed ID: 19329284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lymphocyte stimulation test with drug-photomodified cells in patients with quinolone photosensitivity.
    Tokura Y; Seo N; Ohshima A; Yagi H; Furukawa F; Takigawa M
    J Dermatol Sci; 1999 Sep; 21(1):34-41. PubMed ID: 10468190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photohaptenic properties of fluoroquinolones.
    Tokura Y; Nishijima T; Yagi H; Furukawa F; Takigawa M
    Photochem Photobiol; 1996 Nov; 64(5):838-44. PubMed ID: 8931383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of murine model of allergic photocontact dermatitis to ketoprofen and characterization of pathogenic T cells.
    Imai S; Atarashi K; Ikesue K; Akiyama K; Tokura Y
    J Dermatol Sci; 2006 Feb; 41(2):127-36. PubMed ID: 16226877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quinolone-photoconjugated major histocompatibility complex class II-binding peptides with lysine are antigenic for T cells mediating murine quinolone photoallergy.
    Tokura Y; Seo N; Fujie M; Takigawa M
    J Invest Dermatol; 2001 Nov; 117(5):1206-11. PubMed ID: 11710934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune responses to photohaptens: implications for the mechanisms of photosensitivity to exogenous agents.
    Tokura Y
    J Dermatol Sci; 2000 Mar; 23 Suppl 1():S6-9. PubMed ID: 10764983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunological and molecular mechanisms of photoallergic contact dermatitis.
    Tokura Y
    J UOEH; 2003 Dec; 25(4):387-95. PubMed ID: 14692341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T cell-mediated hypersensitivity to quinolones: mechanisms and cross-reactivity.
    Schmid DA; Depta JP; Pichler WJ
    Clin Exp Allergy; 2006 Jan; 36(1):59-69. PubMed ID: 16393267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bryostatin 1/ionomycin (B/I) ex vivo stimulation preferentially activates L-selectinlow tumor-sensitized lymphocytes.
    Chin CS; Miller CH; Graham L; Parviz M; Zacur S; Patel B; Duong A; Bear HD
    Int Immunol; 2004 Sep; 16(9):1283-94. PubMed ID: 15262898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of Langerhans cells with ketoprofen plus UVA in murine photocontact dermatitis to ketoprofen.
    Atarashi K; Kabashima K; Akiyama K; Tokura Y
    J Dermatol Sci; 2007 Aug; 47(2):151-9. PubMed ID: 17512174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic and chemical origins of cross-reactive immunological reactions to arylamine benzenesulfonamides: T-cell responses to hydroxylamine and nitroso derivatives.
    Castrejon JL; Lavergne SN; El-Sheikh A; Farrell J; Maggs JL; Sabbani S; O'Neill PM; Park BK; Naisbitt DJ
    Chem Res Toxicol; 2010 Jan; 23(1):184-92. PubMed ID: 19954178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin and characteristics of ultraviolet-B radiation-induced suppressor T lymphocytes.
    Shreedhar VK; Pride MW; Sun Y; Kripke ML; Strickland FM
    J Immunol; 1998 Aug; 161(3):1327-35. PubMed ID: 9686595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Participation of Vbeta13(+) and Vbeta1(+) T cells in transfer thyroiditis after activation of mouse thyroglobulin-primed T cells by superantigen staphylococcal enterotoxin A.
    Wan Q; Kita M; Flynn JC; Panos JC; Motte RW; Davies TF; Giraldo AA; David CS; Kong YC
    Cell Immunol; 2001 Nov; 213(2):149-57. PubMed ID: 11831877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UVB-irradiated dendritic cells are impaired in their APC function and tolerize primed Th1 cells but not naive CD4+ T cells.
    Denfeld RW; Hara H; Tesmann JP; Martin S; Simon JC
    J Leukoc Biol; 2001 Apr; 69(4):548-54. PubMed ID: 11310840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The immunologic function of 1B2+ double negative (CD4-CD8-) T cells in the 2C transgenic mouse.
    Margenthaler JA; Flye MW
    J Surg Res; 2005 Jun; 126(2):160-6. PubMed ID: 15919414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfection of drug-specific T-cell receptors into hybridoma cells: tools to monitor drug interaction with T-cell receptors and evaluate cross-reactivity to related compounds.
    Schmid DA; Depta JP; Lüthi M; Pichler WJ
    Mol Pharmacol; 2006 Jul; 70(1):356-65. PubMed ID: 16617162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.