These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9558312)

  • 1. Molecular basis of resistance to HIV-1 protease inhibition: a plausible hypothesis.
    Luque I; Todd MJ; Gómez J; Semo N; Freire E
    Biochemistry; 1998 Apr; 37(17):5791-7. PubMed ID: 9558312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin.
    Gómez J; Freire E
    J Mol Biol; 1995 Sep; 252(3):337-50. PubMed ID: 7563055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM
    Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations.
    Ohtaka H; Schön A; Freire E
    Biochemistry; 2003 Nov; 42(46):13659-66. PubMed ID: 14622012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development.
    Beck ZQ; Hervio L; Dawson PE; Elder JH; Madison EL
    Virology; 2000 Sep; 274(2):391-401. PubMed ID: 10964781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of inhibitor binding on the structural stability and cooperativity of the HIV-1 protease.
    Todd MJ; Freire E
    Proteins; 1999 Aug; 36(2):147-56. PubMed ID: 10398363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The binding energetics of first- and second-generation HIV-1 protease inhibitors: implications for drug design.
    Velazquez-Campoy A; Kiso Y; Freire E
    Arch Biochem Biophys; 2001 Jun; 390(2):169-75. PubMed ID: 11396919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic basis of resistance to HIV-1 protease inhibition: calorimetric analysis of the V82F/I84V active site resistant mutant.
    Todd MJ; Luque I; Velázquez-Campoy A; Freire E
    Biochemistry; 2000 Oct; 39(39):11876-83. PubMed ID: 11009599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural parameterization of the binding enthalpy of small ligands.
    Luque I; Freire E
    Proteins; 2002 Nov; 49(2):181-90. PubMed ID: 12210999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIV-1 protease inhibitors: enthalpic versus entropic optimization of the binding affinity.
    Velazquez-Campoy A; Todd MJ; Freire E
    Biochemistry; 2000 Mar; 39(9):2201-7. PubMed ID: 10694385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural stability of the HIV-1 protease.
    Todd MJ; Semo N; Freire E
    J Mol Biol; 1998 Oct; 283(2):475-88. PubMed ID: 9769219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based thermodynamic analysis of HIV-1 protease inhibitors.
    Bardi JS; Luque I; Freire E
    Biochemistry; 1997 Jun; 36(22):6588-96. PubMed ID: 9184138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and thermodynamic characterization of HIV-1 protease inhibitors.
    Shuman CF; Hämäläinen MD; Danielson UH
    J Mol Recognit; 2004; 17(2):106-19. PubMed ID: 15027031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic dissection of the binding energetics of KNI-272, a potent HIV-1 protease inhibitor.
    Velazquez-Campoy A; Luque I; Todd MJ; Milutinovich M; Kiso Y; Freire E
    Protein Sci; 2000 Sep; 9(9):1801-9. PubMed ID: 11045625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease.
    Chellappan S; Kairys V; Fernandes MX; Schiffer C; Gilson MK
    Proteins; 2007 Aug; 68(2):561-7. PubMed ID: 17474129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations.
    Lepsík M; Kríz Z; Havlas Z
    Proteins; 2004 Nov; 57(2):279-93. PubMed ID: 15340915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
    Kar P; Lipowsky R; Knecht V
    J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of HIV-1 protease inhibitor resistance by phosphonate-mediated solvent anchoring.
    Cihlar T; He GX; Liu X; Chen JM; Hatada M; Swaminathan S; McDermott MJ; Yang ZY; Mulato AS; Chen X; Leavitt SA; Stray KM; Lee WA
    J Mol Biol; 2006 Oct; 363(3):635-47. PubMed ID: 16979654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.