These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 955916)

  • 1. Analysis of the thermoluminescence response of LiF powder to thermal neutron and gamma ray exposures.
    Kitahara A; Saitoh M; Harasawa S
    Health Phys; 1976 Jul; 31(1):41-6. PubMed ID: 955916
    [No Abstract]   [Full Text] [Related]  

  • 2. Fading of unannealed LiF(TLD-600) for thermal neutrons and gamma-rays.
    Johnson TL; Luersen RB
    Health Phys; 1980 May; 38(5):853-6. PubMed ID: 7390850
    [No Abstract]   [Full Text] [Related]  

  • 3. Response components of LiF:Mg,Ti around a moderated Am-Be neutron source.
    Méndez R; Iñiguez MP; Barquero R; Mañanes A; Gallego E; Lorente A; Voytchev M
    Radiat Prot Dosimetry; 2002; 98(2):173-8. PubMed ID: 11926367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The response of thermoluminescence dosemeters to fast (14-7 MeV) and thermal neutrons.
    Rossiter MJ; Lewis VE; Wood JW
    Phys Med Biol; 1977 Jul; 22(4):731-6. PubMed ID: 887651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoluminescence in LiF induced by monoenergetic, parallel beam, 13.8- and 81.0-meV diffracted neutrons. The intrinsic TL response per absorbed neutron.
    Horowitz YS; Shahar BB; Mordechai S; Dubi A
    Radiat Res; 1977 Mar; 69(3):402-16. PubMed ID: 847093
    [No Abstract]   [Full Text] [Related]  

  • 6. Dependence of TLD thermoluminescence yield on absorbed dose in a thermal neutron field.
    Gambarini G; Roy MS
    Appl Radiat Isot; 1997; 48(10-12):1467-75. PubMed ID: 9463872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On neutron-gamma mixed field dosimetry with LiF:Mg,Ti at radiation protection dose levels.
    Weinstein M; German U; Alfassi ZB
    Radiat Prot Dosimetry; 2006; 119(1-4):314-8. PubMed ID: 16735561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of LiF:Ti thermoluminescence dosimeter material.
    Aypar A; Demirtaş H
    Int J Appl Radiat Isot; 1985 Jul; 36(7):566-8. PubMed ID: 4066063
    [No Abstract]   [Full Text] [Related]  

  • 9. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.
    Gambarini G; Magni D; Regazzoni V; Borroni M; Carrara M; Pignoli E; Burian J; Marek M; Klupak V; Viererbl L
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):422-7. PubMed ID: 24435913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the fast neutron dose equivalent using the thermal neutron response of LiF TL material.
    Hankins DE
    Health Phys; 1976 Aug; 31(2):170-3. PubMed ID: 972057
    [No Abstract]   [Full Text] [Related]  

  • 11. Response of TLD-600/TLD-700 and CR-39 to neutrons for medical dosimetry.
    El-Faramawy N; Chopra V; Rawash S; El-Hafez AA; Dhoble SJ
    Luminescence; 2021 Aug; 36(5):1257-1264. PubMed ID: 33835719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoluminescent characteristics of LiKYF5:Pr3+ and KYF4:Tm3 crystals for applications in neutron and gamma dosimetry.
    Coeck M; Vanhavere F; Khaidukov N
    Radiat Prot Dosimetry; 2002; 100(1-4):221-4. PubMed ID: 12382864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of thermal neutron and gamma ray sensitivities of common TLD materials.
    Ayyangar K; Lakshmanan AR; Chandra B; Ramadas K
    Phys Med Biol; 1974 Sep; 19(5):665-76. PubMed ID: 4374709
    [No Abstract]   [Full Text] [Related]  

  • 14. Development of thermal neutron-sensitive glass dosemeter containing lithium.
    Maki D; Kobayashi H; Sato F; Murata I; Kato Y; Tanaka T; Yamamoto T; Iida T
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):226-30. PubMed ID: 21224260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutron dosimetry with 6LiF-rich TL sheet.
    Konnai A; Odano N; Nariyama N; Ohnishi S; Nakajima N; Yamamoto K; Kishi T; Ozasa N; Ishikawa Y
    Radiat Prot Dosimetry; 2006; 120(1-4):133-5. PubMed ID: 16709707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal neutron and gamma ray mixed field dosimetry with Li2B4O7:Mn.
    Lakshmanan AR; Rajendran KV; Ayyangar K; Madhvanath U
    Health Phys; 1976 Jun; 30(6):489-91. PubMed ID: 955906
    [No Abstract]   [Full Text] [Related]  

  • 17. Thermoluminescence in CaF2:Dy and CaF2:Mn induced by monoenergetic, parallel beam, 81-0 meV diffracted neutrons.
    Horowitz YS; Shahar BB; Dubi A; Pinto H
    Phys Med Biol; 1977 May; 22(3):500-10. PubMed ID: 866414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The natural fluorite in the dosimetry of the mixed field of gamma rays and thermal neutrons.
    Mishev IT; Radicheva MA; Levi SM
    Health Phys; 1972 Sep; 23(3):367-9. PubMed ID: 4642956
    [No Abstract]   [Full Text] [Related]  

  • 19. Gamma dose measurement in a water phantom irradiated with the BNCT facility at THOR.
    Liu HM; Hsu PC; Liaw TF
    Radiat Prot Dosimetry; 2001; 95(4):353-8. PubMed ID: 11707034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Investigation on thermal-neutron sensitivity of commercial BeO(Na) thermoluminescence dosimeter and development of thermal-neutron insensitive BeO(Na) phosphors encapsulated in quartz-capillary].
    Hisanaga S; Yamashita T; Kitamura I; Itoh T; Kondo S
    Radioisotopes; 1990 Sep; 39(9):381-5. PubMed ID: 2236662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.