These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9559861)

  • 1. Estimation of membrane potential deltapsi in reconstituted plasma membrane vesicles using a numerical model of oxonol VI distribution.
    Portele A; Lenz J; Höfer M
    J Bioenerg Biomembr; 1997 Dec; 29(6):603-9. PubMed ID: 9559861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of the proton electrochemical gradient in reconstituted vesicles: quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes.
    Holoubek A; Vecer J; Sigler K
    J Fluoresc; 2007 Mar; 17(2):201-13. PubMed ID: 17279336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratiometric fluorescence measurements of membrane potential generated by yeast plasma membrane H(+)-ATPase reconstituted into vesicles.
    Holoubek A; Vecer J; Opekarová M; Sigler K
    Biochim Biophys Acta; 2003 Jan; 1609(1):71-9. PubMed ID: 12507760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.
    Apell HJ; Bersch B
    Biochim Biophys Acta; 1987 Oct; 903(3):480-94. PubMed ID: 2444259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stopped-flow kinetic study of the interaction of potential-sensitive oxonol dyes with lipid vesicles.
    Clarke RJ; Apell HJ
    Biophys Chem; 1989 Nov; 34(3):225-37. PubMed ID: 2611347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrogenic and electroneutral transport modes of renal Na/K ATPase reconstituted into proteoliposomes.
    Goldshleger R; Shahak Y; Karlish SJ
    J Membr Biol; 1990 Feb; 113(2):139-54. PubMed ID: 2157016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the potential-sensitive extrinsic probe oxonol VI in beef heart submitochondrial particles.
    Smith JC; Chance B
    J Membr Biol; 1979; 46(3):255-82. PubMed ID: 233819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and diffusion kinetics of the interaction of a hydrophobic potential-sensitive dye with lipid vesicles.
    Clarke RJ
    Biophys Chem; 1991 Jan; 39(1):91-106. PubMed ID: 2012838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrogenicity of the Na+-ATPase from the marine microalga Tetraselmis (Platymonas) viridis and associated H+ countertransport.
    Balnokin YV; Popova LG; Andreev IM
    FEBS Lett; 1999 Dec; 462(3):402-6. PubMed ID: 10622734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxonol-V as a probe of chromaffin granule membrane potentials.
    Scherman D; Henry JP
    Biochim Biophys Acta; 1980 Jun; 599(1):150-66. PubMed ID: 7397145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological study with oxonol VI of passive NO3- transport by isolated plant root plasma membrane.
    Pouliquin P; Grouzis J; Gibrat R
    Biophys J; 1999 Jan; 76(1 Pt 1):360-73. PubMed ID: 9876148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The behavior of oxonol dyes in phospholipid dispersions.
    Bashford CL; Chance B; Smith JC; Yoshida T
    Biophys J; 1979 Jan; 25(1):63-85. PubMed ID: 263685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pump current and Na+/K+ coupling ratio of Na+/K+-ATPase in reconstituted lipid vesicles.
    Clarke RJ; Apell HJ; Läuger P
    Biochim Biophys Acta; 1989 Jun; 981(2):326-36. PubMed ID: 2543461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Na+-translocating ATPase in the plasma membrane of the marine microalga Tetraselmis viridis catalyzes Na+/H+ exchange.
    Balnokin YV; Popova LG; Pagis LY; Andreev IM
    Planta; 2004 Jun; 219(2):332-7. PubMed ID: 14997393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membranes.
    Toyomizu M; Okamoto K; Akiba Y; Nakatsu T; Konishi T
    Biochim Biophys Acta; 2002 Jan; 1558(1):54-62. PubMed ID: 11750264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells.
    Konrad KR; Hedrich R
    Plant J; 2008 Jul; 55(1):161-73. PubMed ID: 18363788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the plasma membrane potential in Pneumocystis carinii.
    VanderHeyden N; McLaughlin GL; Docampo R
    FEMS Microbiol Lett; 2000 Feb; 183(2):327-30. PubMed ID: 10675605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanolamine and related amino alcohols increase basal and evoked release of [3H]-D-aspartic acid from synaptosomes by enhancing the filling of synaptic vesicles.
    Liao C; Nicholson RA
    Eur J Pharmacol; 2007 Jul; 566(1-3):103-12. PubMed ID: 17448462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma membrane potential of Lettré cells does not depend on cation gradients but on pumps.
    Bashford CL; Pasternak CA
    J Membr Biol; 1984; 79(3):275-84. PubMed ID: 6471096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of membrane potentials.
    Ward MW
    Methods Mol Biol; 2010; 591():335-51. PubMed ID: 19957140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.