These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9559861)

  • 21. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.
    Goldshlegger R; Karlish SJ; Rephaeli A; Stein WD
    J Physiol; 1987 Jun; 387():331-55. PubMed ID: 2443682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of oxonol V as a probe of membrane potential in proteoliposomes containing cytochrome oxidase in the submitochondrial orientation.
    Cooper CE; Bruce D; Nicholls P
    Biochemistry; 1990 Apr; 29(16):3859-65. PubMed ID: 2162199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of carotenoids and oxonol VI as probes for membrane potential in proteoliposomes.
    van Walraven HS; Krab K; Hagendoorn MJ; Kraayenhof R
    FEBS Lett; 1985 May; 184(1):96-9. PubMed ID: 3157600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purified human MDR 1 modulates membrane potential in reconstituted proteoliposomes.
    Howard EM; Roepe PD
    Biochemistry; 2003 Apr; 42(12):3544-55. PubMed ID: 12653559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe.
    Hoffman JF; Laris PC
    J Physiol; 1974 Jun; 239(3):519-52. PubMed ID: 4851321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATP-dependent spectral response of oxonol VI in an ATP-Pi exchange complex.
    Kiehl R; Hanstein WG
    Biochim Biophys Acta; 1984 Aug; 766(2):375-85. PubMed ID: 6235853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative study of membrane potential-sensitive fluorescent probes and their use in ion channel screening assays.
    Wolff C; Fuks B; Chatelain P
    J Biomol Screen; 2003 Oct; 8(5):533-43. PubMed ID: 14567780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for a selective and electroneutral K+/H(+)-exchange in Saccharomyces cerevisiae using plasma membrane vesicles.
    Camarasa C; Prieto S; Ros R; Salmon JM; Barre P
    Yeast; 1996 Oct; 12(13):1301-13. PubMed ID: 8923735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calibration procedures for the quantitative determination of membrane potential in human cells using anionic dyes.
    Klapperstück T; Glanz D; Hanitsch S; Klapperstück M; Markwardt F; Wohlrab J
    Cytometry A; 2013 Jul; 83(7):612-26. PubMed ID: 23650268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional reconstitution of the gamma-aminobutyric acid transporter from synaptic vesicles using artificial ion gradients.
    Hell JW; Edelmann L; Hartinger J; Jahn R
    Biochemistry; 1991 Dec; 30(51):11795-800. PubMed ID: 1684290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of response of potential-sensitive dyes studied by time-resolved fluorescence.
    Das TK; Periasamy N; Krishnamoorthy G
    Biophys J; 1993 Apr; 64(4):1122-32. PubMed ID: 19431883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxonol dyes as monitors of membrane potential: the effect of viruses and toxins on the plasma membrane potential of animal cells in monolayer culture and in suspension.
    Bashford CL; Alder GM; Gray MA; Micklem KJ; Taylor CC; Turek PJ; Pasternak CA
    J Cell Physiol; 1985 Jun; 123(3):326-36. PubMed ID: 3988810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The plasma membrane of microaerophilic protists: oxidative and nitrosative stress.
    Lloyd D; Harris JC; Biagini GA; Hughes MR; Maroulis S; Bernard C; Wadley RB; Edwards MR
    Microbiology (Reading); 2004 May; 150(Pt 5):1183-1190. PubMed ID: 15133079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of the membrane potential generated by complex I in submitochondrial particles.
    Ghelli A; Benelli B; Esposti MD
    J Biochem; 1997 Apr; 121(4):746-55. PubMed ID: 9163527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ability of membrane potential dyes and calcafluor white to distinguish between viable and non-viable bacteria.
    Mason DJ; Lopéz-Amorós R; Allman R; Stark JM; Lloyd D
    J Appl Bacteriol; 1995 Mar; 78(3):309-15. PubMed ID: 7537262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The measurement of the macrophage membrane potential by using an oxonol fluorescent probe].
    Gamaleĭ IA; Kaulin AB; Kirpichnikova KM
    Tsitologiia; 1991; 33(6):60-6. PubMed ID: 1821491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the transmembrane potential of bacterial cells by voltage-sensitive dyes.
    Suzuki H; Wang ZY; Yamakoshi M; Kobayashi M; Nozawa T
    Anal Sci; 2003 Sep; 19(9):1239-42. PubMed ID: 14516073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional identification of electrogenic Na+-translocating ATPase in the plasma membrane of the halotolerant microalga Dunaliella maritima.
    Popova LG; Shumkova GA; Andreev IM; Balnokin YV
    FEBS Lett; 2005 Sep; 579(22):5002-6. PubMed ID: 16137688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sodium cotransport systems and the membrane potential difference.
    Eddy AA
    Ann N Y Acad Sci; 1985; 456():51-62. PubMed ID: 2418734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria.
    Bashford CL; Chance B; Prince RC
    Biochim Biophys Acta; 1979 Jan; 545(1):46-57. PubMed ID: 103582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.