These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9559925)

  • 1. Selective activation of human cortical area V5A by a rotating visual stimulus in fMRI; implication of attentional mechanisms.
    Haug BA; Baudewig J; Paulus W
    Neuroreport; 1998 Mar; 9(4):611-4. PubMed ID: 9559925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical fMRI activation produced by attentive tracking of moving targets.
    Culham JC; Brandt SA; Cavanagh P; Kanwisher NG; Dale AM; Tootell RB
    J Neurophysiol; 1998 Nov; 80(5):2657-70. PubMed ID: 9819271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
    Saygin AP; Sereno MI
    Cereb Cortex; 2008 Sep; 18(9):2158-68. PubMed ID: 18234687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI.
    Büchel C; Friston KJ
    Cereb Cortex; 1997 Dec; 7(8):768-78. PubMed ID: 9408041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human cortical regions activated by wide-field visual motion: an H2(15)O PET study.
    Cheng K; Fujita H; Kanno I; Miura S; Tanaka K
    J Neurophysiol; 1995 Jul; 74(1):413-27. PubMed ID: 7472342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study.
    Caplan JB; Luks TL; Simpson GV; Glaholt M; McIntosh AR
    Neuroimage; 2006 Feb; 29(4):1192-202. PubMed ID: 16236528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion-responsive regions of the human brain.
    Sunaert S; Van Hecke P; Marchal G; Orban GA
    Exp Brain Res; 1999 Aug; 127(4):355-70. PubMed ID: 10480271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls.
    Gitelman DR; Nobre AC; Parrish TB; LaBar KS; Kim YH; Meyer JR; Mesulam M
    Brain; 1999 Jun; 122 ( Pt 6)():1093-106. PubMed ID: 10356062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attention to 3-D shape, 3-D motion, and texture in 3-D structure from motion displays.
    Peuskens H; Claeys KG; Todd JT; Norman JF; Van Hecke P; Orban GA
    J Cogn Neurosci; 2004 May; 16(4):665-82. PubMed ID: 15165355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dominance of the left oblique view in activating the cortical network for face recognition.
    Kowatari Y; Yamamoto M; Takahashi T; Kansaku K; Kitazawa S; Ueno S; Yamane S
    Neurosci Res; 2004 Dec; 50(4):475-80. PubMed ID: 15567485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D surface perception from motion involves a temporal-parietal network.
    Beer AL; Watanabe T; Ni R; Sasaki Y; Andersen GJ
    Eur J Neurosci; 2009 Aug; 30(4):703-13. PubMed ID: 19674088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional anatomy of pursuit eye movements in humans as revealed by fMRI.
    Petit L; Haxby JV
    J Neurophysiol; 1999 Jul; 82(1):463-71. PubMed ID: 10400972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring cortical attentional system by using fMRI during a Continuous Perfomance Test.
    Tana MG; Montin E; Cerutti S; Bianchi AM
    Comput Intell Neurosci; 2010; 2010():329213. PubMed ID: 20011033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation.
    Wall MB; Lingnau A; Ashida H; Smith AT
    Eur J Neurosci; 2008 May; 27(10):2747-57. PubMed ID: 18547254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of conscious perception in the attentional blink.
    Kranczioch C; Debener S; Schwarzbach J; Goebel R; Engel AK
    Neuroimage; 2005 Feb; 24(3):704-14. PubMed ID: 15652305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional MRI of working memory and selective attention in vibrotactile frequency discrimination.
    Sörös P; Marmurek J; Tam F; Baker N; Staines WR; Graham SJ
    BMC Neurosci; 2007 Jul; 8():48. PubMed ID: 17610721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain areas involved in perception of biological motion.
    Grossman E; Donnelly M; Price R; Pickens D; Morgan V; Neighbor G; Blake R
    J Cogn Neurosci; 2000 Sep; 12(5):711-20. PubMed ID: 11054914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.