BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 9560374)

  • 1. Regulation of DNA polymerase exonucleolytic proofreading activity: studies of bacteriophage T4 "antimutator" DNA polymerases.
    Reha-Krantz LJ
    Genetics; 1998 Apr; 148(4):1551-7. PubMed ID: 9560374
    [No Abstract]   [Full Text] [Related]  

  • 2. Selection of bacteriophage T4 antimutator DNA polymerases: a link between proofreading and sensitivity to phosphonoacetic acid.
    Reha-Krantz LJ; Wong C
    Mutat Res; 1996 Feb; 350(1):9-16. PubMed ID: 8657202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proofreading pathway of bacteriophage T4 DNA polymerase.
    Reha-Krantz LJ; Marquez LA; Elisseeva E; Baker RP; Bloom LB; Dunford HB; Goodman MF
    J Biol Chem; 1998 Sep; 273(36):22969-76. PubMed ID: 9722519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and biochemical studies of bacteriophage T4 DNA polymerase 3'-->5'-exonuclease activity.
    Reha-Krantz LJ; Nonay RL
    J Biol Chem; 1993 Dec; 268(36):27100-8. PubMed ID: 8262948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning about DNA polymerase function by studying antimutator DNA polymerases.
    Reha-Krantz LJ
    Trends Biochem Sci; 1995 Apr; 20(4):136-40. PubMed ID: 7770910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA polymerase fidelity: from genetics toward a biochemical understanding.
    Goodman MF; Fygenson KD
    Genetics; 1998 Apr; 148(4):1475-82. PubMed ID: 9560367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site.
    Tanguy Le Gac N; Delagoutte E; Germain M; Villani G
    J Mol Biol; 2004 Mar; 336(5):1023-34. PubMed ID: 15037066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motif A of bacteriophage T4 DNA polymerase: role in primer extension and DNA replication fidelity. Isolation of new antimutator and mutator DNA polymerases.
    Reha-Krantz LJ; Nonay RL
    J Biol Chem; 1994 Feb; 269(8):5635-43. PubMed ID: 8119900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using 2-aminopurine fluorescence to detect bacteriophage T4 DNA polymerase-DNA complexes that are important for primer extension and proofreading reactions.
    Hariharan C; Reha-Krantz LJ
    Biochemistry; 2005 Dec; 44(48):15674-84. PubMed ID: 16313170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention of replication fidelity by a DNA polymerase functioning in a distantly related environment.
    Dressman HK; Wang CC; Karam JD; Drake JW
    Proc Natl Acad Sci U S A; 1997 Jul; 94(15):8042-6. PubMed ID: 9223311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of DNA polymerase and DNA helicase within the bacteriophage T4 DNA replication complex. Leading strand synthesis by the T4 DNA polymerase mutant A737V (tsL141) requires the T4 gene 59 helicase assembly protein.
    Spacciapoli P; Nossal NG
    J Biol Chem; 1994 Jan; 269(1):447-55. PubMed ID: 8276834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site.
    Blanca G; Delagoutte E; Tanguy le Gac N; Johnson NP; Baldacci G; Villani G
    Biochem J; 2007 Mar; 402(2):321-9. PubMed ID: 17064253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a new motif in family B DNA polymerases by mutational analyses of the bacteriophage t4 DNA polymerase.
    Li V; Hogg M; Reha-Krantz LJ
    J Mol Biol; 2010 Jul; 400(3):295-308. PubMed ID: 20493878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and characterization of a bacteriophage T4 DNA polymerase deficient in 3'-->5' exonuclease activity.
    Frey MW; Nossal NG; Capson TL; Benkovic SJ
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2579-83. PubMed ID: 8464864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic analysis of polymerization and exonuclease proofreading by a high-fidelity DNA polymerase during translesion DNA synthesis.
    Devadoss B; Lee I; Berdis AJ
    Biochim Biophys Acta; 2013 Jan; 1834(1):34-45. PubMed ID: 22959853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic characterization of a bacteriophage T4 antimutator DNA polymerase.
    Wu P; Nossal N; Benkovic SJ
    Biochemistry; 1998 Oct; 37(42):14748-55. PubMed ID: 9778349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in replication of a DNA template containing an ethyl phosphotriester by T4 DNA polymerase and Escherichia coli DNA polymerase I.
    Tsujikawa L; Weinfield M; Reha-Krantz LJ
    Nucleic Acids Res; 2003 Sep; 31(17):4965-72. PubMed ID: 12930945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the effects of enhanced processivity and metal ions on translesion DNA replication catalyzed by the bacteriophage T4 DNA polymerase.
    Reineks EZ; Berdis AJ
    J Mol Biol; 2003 May; 328(5):1027-45. PubMed ID: 12729739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.