These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 9560377)

  • 1. Antimutator mutants in bacteriophage T4 and Escherichia coli.
    Schaaper RM
    Genetics; 1998 Apr; 148(4):1579-85. PubMed ID: 9560377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General antimutators are improbable.
    Drake JW
    J Mol Biol; 1993 Jan; 229(1):8-13. PubMed ID: 8421317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mismatch repair in the antimutator Escherichia coli mud.
    Dzidić S; Petranović M
    Mutat Res; 2003 Jan; 522(1-2):27-32. PubMed ID: 12517409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mutational specificity of two Escherichia coli dnaE antimutator alleles as determined from lacI mutation spectra.
    Schaaper RM
    Genetics; 1993 Aug; 134(4):1031-8. PubMed ID: 8375646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rates of spontaneous mutation in bacteriophage T4 are independent of host fidelity determinants.
    Santos ME; Drake JW
    Genetics; 1994 Nov; 138(3):553-64. PubMed ID: 7851754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of the bacteriophage T4 comC alpha 55.6 and comCJ mutants. A possible role in an antitermination process.
    Chiurazzi M; Pulitzer JF
    FEMS Microbiol Lett; 1998 Sep; 166(2):187-95. PubMed ID: 9770273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of T4 phage infection and anaerobiosis upon nucleotide pools and mutagenesis in nucleoside diphosphokinase-defective Escherichia coli strains.
    Zhang X; Lu Q; Inouye M; Mathews CK
    J Bacteriol; 1996 Jul; 178(14):4115-21. PubMed ID: 8763939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementation of bacteriophage induction and recombination defects in Escherichia coli RecA(-) mutants by expression of the cloned T4 bacteriophage uvsX gene.
    Kuhl SA; Zimmer JA; Rohatgi P
    Curr Microbiol; 2003 Feb; 46(2):88-93. PubMed ID: 12520361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Escherichia coli dnaE antimutator alleles in a proofreading-deficient mutD5 strain.
    Fijalkowska IJ; Schaaper RM
    J Bacteriol; 1995 Oct; 177(20):5979-86. PubMed ID: 7592352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substitutions in bacteriophage T4 AsiA and Escherichia coli sigma(70) that suppress T4 motA activation mutations.
    Cicero MP; Sharp MM; Gross CA; Kreuzer KN
    J Bacteriol; 2001 Apr; 183(7):2289-97. PubMed ID: 11244069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Either bacteriophage T4 RNase H or Escherichia coli DNA polymerase I is essential for phage replication.
    Hobbs LJ; Nossal NG
    J Bacteriol; 1996 Dec; 178(23):6772-7. PubMed ID: 8955295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motif A of bacteriophage T4 DNA polymerase: role in primer extension and DNA replication fidelity. Isolation of new antimutator and mutator DNA polymerases.
    Reha-Krantz LJ; Nonay RL
    J Biol Chem; 1994 Feb; 269(8):5635-43. PubMed ID: 8119900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutator action by Escherichia coli strains carrying dnaE mutations.
    Sevastopoulos CG; Glaser DA
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3947-50. PubMed ID: 333443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The amber mutants of phage T4.
    Stahl FW
    Genetics; 1995 Oct; 141(2):439-42. PubMed ID: 8647382
    [No Abstract]   [Full Text] [Related]  

  • 15. Ribonucleoside and deoxyribonucleoside triphosphate pools during 2-aminopurine mutagenesis in T4 mutator-, wild type-, and antimutator-infected Escherichia coli.
    Hopkins RL; Goodman MF
    J Biol Chem; 1985 Jun; 260(11):6618-22. PubMed ID: 3888983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of mutator, antimutator and wild-type DNA polymerase of T4 bacteriophage on mutation rates in rII cistrons of its own genome and in complemented amber mutants of gene 43.
    Siwińska ME; Tabaczyński M; Kunicki-Goldfinger WJ
    Acta Microbiol Pol A; 1974; 6(1):63-9. PubMed ID: 4597551
    [No Abstract]   [Full Text] [Related]  

  • 17. Bacteriophage T4 gene 17 amplification mutants: evidence for initiation by the T4 terminase subunit gp16.
    Wu CH; Lin H; Black LW
    J Mol Biol; 1995 Apr; 247(4):523-8. PubMed ID: 7723009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replication fidelity in E. coli: Differential leading and lagging strand effects for dnaE antimutator alleles.
    Makiela-Dzbenska K; Maslowska KH; Kuban W; Gawel D; Jonczyk P; Schaaper RM; Fijalkowska IJ
    DNA Repair (Amst); 2019 Nov; 83():102643. PubMed ID: 31324532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of mutation frequency by bacteriophage T4 DNA polymerase. II. Accuracy of nucleotide selection by the L88 mutator, CB120 antimutator, and wild type phage T4 DNA polymerases.
    Gillin FD; Nossal NG
    J Biol Chem; 1976 Sep; 251(17):5225-32. PubMed ID: 956183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteriophage T4 rnh (RNase H) null mutations: effects on spontaneous mutation and epistatic interaction with rII mutations.
    Bebenek A; Smith LA; Drake JW
    J Bacteriol; 1999 May; 181(10):3123-8. PubMed ID: 10322013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.