BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9560412)

  • 1. High apparent rate of simultaneous compensatory base-pair substitutions in ribosomal RNA.
    Tillier ER; Collins RA
    Genetics; 1998 Apr; 148(4):1993-2002. PubMed ID: 9560412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA.
    Rousset F; Pélandakis M; Solignac M
    Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10032-6. PubMed ID: 1946420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical models for substitution in ribosomal RNA.
    Smith AD; Lui TW; Tillier ER
    Mol Biol Evol; 2004 Mar; 21(3):419-27. PubMed ID: 14660689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary distances between nucleotide sequences based on the distribution of substitution rates among sites as estimated by parsimony.
    Tourasse NJ; Gouy M
    Mol Biol Evol; 1997 Mar; 14(3):287-98. PubMed ID: 9066796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster.
    Hancock JM; Tautz D; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):393-414. PubMed ID: 3136295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A story: unpaired adenosine bases in ribosomal RNAs.
    Gutell RR; Cannone JJ; Shang Z; Du Y; Serra MJ
    J Mol Biol; 2000 Dec; 304(3):335-54. PubMed ID: 11090278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of pairing constraints identifies a 9 base-pair core within box C/D snoRNA-rRNA duplexes.
    Chen CL; Perasso R; Qu LH; Amar L
    J Mol Biol; 2007 Jun; 369(3):771-83. PubMed ID: 17459411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenine·cytosine substitutions are an alternative pathway of compensatory mutation in angiosperm ITS2.
    Zhang X; Cao Y; Zhang W; Simmons MP
    RNA; 2020 Feb; 26(2):209-217. PubMed ID: 31748405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals.
    Springer MS; Hollar LJ; Burk A
    Mol Biol Evol; 1995 Nov; 12(6):1138-50. PubMed ID: 8524047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced formulation of base pair changes in the stem regions of ribosomal RNAs; its application to mitochondrial rRNAs for resolving the phylogeny of animals.
    Otsuka J; Sugaya N
    J Theor Biol; 2003 Jun; 222(4):447-60. PubMed ID: 12781743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate and mode differences between nuclear and mitochondrial small-subunit rRNA genes in mushrooms.
    Bruns TD; Szaro TM
    Mol Biol Evol; 1992 Sep; 9(5):836-55. PubMed ID: 1382179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the transition/transversion ratio from independent pairwise comparisons with an assumed phylogeny.
    Purvis A; Bromham L
    J Mol Evol; 1997 Jan; 44(1):112-9. PubMed ID: 9010143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetically preserved inter-rRNA base pairs: involvement in ribosomal subunit association.
    Thanaraj TA
    Nucleic Acids Res; 1994 Sep; 22(19):3936-42. PubMed ID: 7937116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bases defining an ammonium and magnesium ion-dependent tertiary structure within the large subunit ribosomal RNA.
    Lu M; Draper DE
    J Mol Biol; 1994 Dec; 244(5):572-85. PubMed ID: 7527467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating substitution rates in ribosomal RNA genes.
    Rzhetsky A
    Genetics; 1995 Oct; 141(2):771-83. PubMed ID: 8647409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nonhyperthermophilic common ancestor to extant life forms.
    Galtier N; Tourasse N; Gouy M
    Science; 1999 Jan; 283(5399):220-1. PubMed ID: 9880254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonuniformity of nucleotide substitution rates in molecular evolution: computer simulation and analysis of 5S ribosomal RNA sequences.
    Manske CL; Chapman DJ
    J Mol Evol; 1987; 26(3):226-51. PubMed ID: 3129569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical characterization of the ribosomal RNA species of the Mollusca. Molecular weight, integrity and secondary-structure features of the RNA of the large and small ribosomal subunits.
    Cammarano P; Londei P; Mazzei F; Felsani A
    Biochem J; 1980 Aug; 189(2):313-35. PubMed ID: 7458915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient likelihood computations with nonreversible models of evolution.
    Boussau B; Gouy M
    Syst Biol; 2006 Oct; 55(5):756-68. PubMed ID: 17060197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA sequence evolution with secondary structure constraints: comparison of substitution rate models using maximum-likelihood methods.
    Savill NJ; Hoyle DC; Higgs PG
    Genetics; 2001 Jan; 157(1):399-411. PubMed ID: 11139520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.