BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9561210)

  • 1. Comparison of the specificity of the aspartic proteinases towards internally consistent sets of oligopeptide substrates.
    Dunn BM; Oda K; Kay J; Rao-Naik C; Lowther WT; Beyer BM; Scarborough PE; Bukhtiyarova M
    Adv Exp Med Biol; 1998; 436():133-8. PubMed ID: 9561210
    [No Abstract]   [Full Text] [Related]  

  • 2. Structure-function database for active site binding to the aspartic proteinases.
    Rao C; Scarborough PE; Lowther WT; Kay J; Batley B; Rapundalo S; Klutchko S; Taylor MD; Dunn BM
    Adv Exp Med Biol; 1991; 306():143-7. PubMed ID: 1812702
    [No Abstract]   [Full Text] [Related]  

  • 3. The two sides of enzyme-substrate specificity: lessons from the aspartic proteinases.
    Dunn BM; Hung S
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):231-40. PubMed ID: 10708860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates.
    Dunn BM; Scarborough PE; Lowther WT; Rao-Naik C
    Adv Exp Med Biol; 1995; 362():1-9. PubMed ID: 8540305
    [No Abstract]   [Full Text] [Related]  

  • 5. Design, synthesis and analysis of new synthetic substrates for the aspartic proteinases.
    Dunn BM; Kay J
    Biochem Soc Trans; 1985 Dec; 13(6):1041-3. PubMed ID: 3937752
    [No Abstract]   [Full Text] [Related]  

  • 6. Exploring the binding preferences/specificity in the active site of human cathepsin E.
    Rao-Naik C; Guruprasad K; Batley B; Rapundalo S; Hill J; Blundell T; Kay J; Dunn BM
    Proteins; 1995 Jun; 22(2):168-81. PubMed ID: 7567964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT; Majer P; Dunn BM
    Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cleavage of human big endothelin-1 by Candida albicans aspartic proteinase.
    Tsushima H; Mine H
    FEMS Immunol Med Microbiol; 1995 Mar; 11(1):69-72. PubMed ID: 7599606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the aspartic proteinases from human erythrocyte membranes and gastric mucosa (slow-moving proteinase) as catalytically equivalent to cathepsin E.
    Jupp RA; Richards AD; Kay J; Dunn BM; Wyckoff JB; Samloff IM; Yamamoto K
    Biochem J; 1988 Sep; 254(3):895-8. PubMed ID: 3058118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of rhizopuspepsin: an analysis of unique specificity.
    Lowther WT; Dunn BM
    Adv Exp Med Biol; 1995; 362():555-8. PubMed ID: 8540371
    [No Abstract]   [Full Text] [Related]  

  • 11. [p-Nitroanilides of amino acids and peptides and fluorescence peptide with inner fluorescence quenching as substrates for cathepsins H, B, D and high molecular weight aspartic peptidase in the brain].
    Azarian AV; Agatian GL; Galoian AA
    Biokhimiia; 1987 Dec; 52(12):2033-7. PubMed ID: 3328984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of cathepsin E type acid proteinase from gastric mucosa of bullfrog, Rana catesbeiana.
    Inokuchi T; Kobayashi K; Horiuchi S
    J Biochem; 1994 Jan; 115(1):76-81. PubMed ID: 8188640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificities and kinetic properties of proteinase A from the yeast Saccharomyces cerevisiae and the development of a novel substrate.
    Kondo H; Shibano Y; Amachi T; Cronin N; Oda K; Dunn BM
    J Biochem; 1998 Jul; 124(1):141-7. PubMed ID: 9644256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonspecific electrostatic binding of substrates and inhibitors to porcine pepsin.
    Kuzmic P; Sun CQ; Zhao ZC; Rich DH
    Adv Exp Med Biol; 1991; 306():75-86. PubMed ID: 1812761
    [No Abstract]   [Full Text] [Related]  

  • 15. Extracellular aspartic proteinases from Candida albicans, Candida tropicalis, and Candida parapsilosis yeasts differ substantially in their specificities.
    Fusek M; Smith EA; Monod M; Dunn BM; Foundling SI
    Biochemistry; 1994 Aug; 33(32):9791-9. PubMed ID: 8068659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrates and inhibitors of human T-cell leukemia virus type 1 (HTLV-1) proteinase.
    Hrusková-Heidingsfeldová O; Bláha I; Urban J; Strop P; Pichová I
    Leukemia; 1997 Apr; 11 Suppl 3():45-6. PubMed ID: 9209292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fungal aspartic proteinase from Trichoderma viride. Specificity during oligopeptide hydrolysis].
    Simankova AN; Mirgorodskaia OA; Savel'eva NV; Savel'ev AN; Kerner R; Rijpstorff P; Alexandrov SL
    Bioorg Khim; 1998 Nov; 24(11):822-30. PubMed ID: 10079939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative modelling of barley-grain aspartic proteinase: a structural rationale for observed hydrolytic specificity.
    Guruprasad K; Törmäkangas K; Kervinen J; Blundell TL
    FEBS Lett; 1994 Sep; 352(2):131-6. PubMed ID: 7925961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat.
    Balbaa M; Cunningham A; Hofmann T
    Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shewasin A, an active pepsin homolog from the bacterium Shewanella amazonensis.
    Simões I; Faro R; Bur D; Kay J; Faro C
    FEBS J; 2011 Sep; 278(17):3177-86. PubMed ID: 21749650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.