These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 956133)

  • 1. Studies on the subsite structure of amylases. III. Inhibition by gluconolactone of the hydrolysis of maltodextrin catalyzed by glucoamylase from Rhizopus niveus.
    Ohnishi M; Yamashita T; Hiromi K
    J Biochem; 1976 May; 79(5):1007-12. PubMed ID: 956133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static and kinetic studies by fluorometry on the interaction between gluconolactone and glucoamylase from Rh. niveus.
    Ohnishi M; Yamashita T; Hiromi K
    J Biochem; 1977 Jan; 81(1):99-105. PubMed ID: 845140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the subsite structure of amylases. I. Interaction of glucoamylase with substrate and analogues studied by difference-spectrophotometry.
    Onishi M; Kegai H; Hiromi K
    J Biochem; 1975 Apr; 77(4):695-703. PubMed ID: 1150637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the subsite structure of amylases. IV. Tryptophan residues of glucoamylase from Rhizopus niveus studied by chemical modification with N-bromosuccinimide.
    Ohnishi M; Hiromi K
    J Biochem; 1976 Jan; 79(1):11-16. PubMed ID: 939754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state inhibitory kinetic studies on the ligand binding modes of Aspergillus niger glucoamylase.
    Tanaka A; Ohya M; Yamamoto T; Nakagawa C; Tsuji T; Senoo K; Obata H
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1548-52. PubMed ID: 10540741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsite structure and ligand binding mechanism of glucoamylase.
    Hiromi K; Ohnishi M; Tanaka A
    Mol Cell Biochem; 1983; 51(1):79-95. PubMed ID: 6406831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static and kinetic studies on the binding of Streptomyces trehalase inhibitor SGI with Rhizopus glucoamylase. Comparison with glucose and gluconolactone.
    Tanaka A; Ohnishi M; Hiromi K; Miyata S; Murao S
    J Biochem; 1982 Jan; 91(1):1-9. PubMed ID: 6461639
    [No Abstract]   [Full Text] [Related]  

  • 8. Fluorometric studies on the binding of gluconolactone, glucose, and glucosides to the subsites of glucoamylase.
    Hiromi K; Tanaka A; Ohnishi M
    Biochemistry; 1982 Jan; 21(1):102-7. PubMed ID: 7059571
    [No Abstract]   [Full Text] [Related]  

  • 9. Steady-state kinetic and calorimetric studies on the binding of Aspergillus niger glucoamylase with gluconolactone, 1-deoxynojirimycin, and beta-cyclodextrin.
    Tanaka A
    Biosci Biotechnol Biochem; 1996 Dec; 60(12):2055-8. PubMed ID: 8988638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of aryl beta-maltotriosides by sweet potato beta-amylase and soybean beta-amylase.
    Suetsugu N; Takeo K; Sanai Y; Kuge T
    J Biochem; 1978 Feb; 83(2):473-8. PubMed ID: 147271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of an insect midgut trehalase by dioxane and delta-gluconolactone: enzyme pKa values and geometric relationships at the active site.
    Terra WR; Terra IC; Ferreira C
    Int J Biochem; 1983; 15(2):143-6. PubMed ID: 6822313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stopped-flow kinetic studies on the binding of gluconolactone and maltose to glucoamylase.
    Tanaka A; Ohnishi M; Hiromi K
    Biochemistry; 1982 Jan; 21(1):107-13. PubMed ID: 7059572
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization, by the binding of D-mannonolactone, of the subsites adjacent to the catalytic site of glucoamylase from Rhizopus niveus.
    Ohnishi M; French D
    Carbohydr Res; 1987 Jul; 165(1):155-60. PubMed ID: 3117364
    [No Abstract]   [Full Text] [Related]  

  • 14. Synthesis of Methyl 5'-Thio-α-isomaltoside via an Acyclic Monothioacetal and its Behavior toward Glucoamylase.
    Hashimoto H; Kawanishi M; Yuasa H
    Chemistry; 1996 May; 2(5):556-560. PubMed ID: 29178223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsite mapping of enzymes. Double inhibition studies.
    Thoma JA; Crook C
    Eur J Biochem; 1982 Mar; 122(3):613-8. PubMed ID: 6174337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases.
    Peixoto SC; Jorge JA; Terenzi HF; Polizeli Mde L
    Int Microbiol; 2003 Dec; 6(4):269-73. PubMed ID: 12920607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the properties of glucoamylases from Rhizopus niveus and Aspergillus niger.
    Pazur JH; Liu BL; Miskiel FJ
    Biotechnol Appl Biochem; 1990 Feb; 12(1):63-78. PubMed ID: 2106901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of guaiacol-alpha-D: -glucoside and curcumin-bis-alpha-D: -glucoside by an amyloglucosidase from Rhizopus.
    R Vijayakumar G; Divakar S
    Biotechnol Lett; 2005 Sep; 27(18):1411-5. PubMed ID: 16215859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Inhibition of glycogen synthase I from rabbit skeletal muscles by 1,5-gluconolactone].
    Sundukov SIu; Solov'eva GA
    Biokhimiia; 1990 Jun; 55(6):1120-3. PubMed ID: 2119823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic studies on glucoamylase. V. Hydrolyses of phenyl alpha-glucosides and phenyl alpha-maltosides.
    Suetsugu N; Hirooka E; Yasui H; Hiromi K; Ono S
    J Biochem; 1973 Jun; 73(6):1223-32. PubMed ID: 4724298
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.