These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9561823)

  • 21. Structural basis for maintenance of bacterial outer membrane lipid asymmetry.
    Abellón-Ruiz J; Kaptan SS; Baslé A; Claudi B; Bumann D; Kleinekathöfer U; van den Berg B
    Nat Microbiol; 2017 Dec; 2(12):1616-1623. PubMed ID: 29038444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biophysical characterization of in- and efflux in Gram-negative bacteria.
    Weingart H; Petrescu M; Winterhalter M
    Curr Drug Targets; 2008 Sep; 9(9):789-96. PubMed ID: 18781924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field.
    Mathivet L; Cribier S; Devaux PF
    Biophys J; 1996 Mar; 70(3):1112-21. PubMed ID: 8785271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-functional analysis of the Dictyoglomus cell envelope.
    Hoppert M; Valdez M; Enseleit M; Theilmann W; Valerius O; Braus GH; Föst C; Liebl W
    Syst Appl Microbiol; 2012 Jul; 35(5):279-90. PubMed ID: 22824581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of glycol ethers for selective release of periplasmic proteins from Gram-negative bacteria.
    Allen JR; Patkar AY; Frank TC; Donate FA; Chiu YC; Shields JE; Gustafson ME
    Biotechnol Prog; 2007; 23(5):1163-70. PubMed ID: 17760459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria.
    Korshunov SS; Imlay JA
    Mol Microbiol; 2002 Jan; 43(1):95-106. PubMed ID: 11849539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Periplasm, periplasmic spaces, and their relation to bacterial wall structure: novel secretion of selected periplasmic proteins from Pseudomonas aeruginosa.
    Beveridge TJ; Kadurugamuwa JL
    Microb Drug Resist; 1996; 2(1):1-8. PubMed ID: 9158716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial resistance to antibiotics as a function of outer membrane permeability.
    Nikaido H
    J Antimicrob Chemother; 1988 Jul; 22 Suppl A():17-22. PubMed ID: 3062001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization of alanyl aminopeptidase and leucyl aminopeptidase in cells of Pseudomonas aeruginosa by application of different methods for periplasm release.
    Jensch T; Fricke B
    J Basic Microbiol; 1997; 37(2):115-28. PubMed ID: 9151424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Melittin-Induced Permeabilization, Re-sealing, and Re-permeabilization of E. coli Membranes.
    Yang Z; Choi H; Weisshaar JC
    Biophys J; 2018 Jan; 114(2):368-379. PubMed ID: 29401434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ROSET Model of TonB Action in Gram-Negative Bacterial Iron Acquisition.
    Klebba PE
    J Bacteriol; 2016 Jan; 198(7):1013-21. PubMed ID: 26787763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides.
    Clausell A; Garcia-Subirats M; Pujol M; Busquets MA; Rabanal F; Cajal Y
    J Phys Chem B; 2007 Jan; 111(3):551-63. PubMed ID: 17228913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis.
    Finkelstein A; Zimmerberg J; Cohen FS
    Annu Rev Physiol; 1986; 48():163-74. PubMed ID: 2423021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the origin of membrane vesicles in gram-negative bacteria.
    Zhou L; Srisatjaluk R; Justus DE; Doyle RJ
    FEMS Microbiol Lett; 1998 Jun; 163(2):223-8. PubMed ID: 9673026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides.
    Miller KJ; Kennedy EP; Reinhold VN
    Science; 1986 Jan; 231(4733):48-51. PubMed ID: 3941890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lanthanide accumulation in the periplasmic space of Escherichia coli B.
    Bayer ME; Bayer MH
    J Bacteriol; 1991 Jan; 173(1):141-9. PubMed ID: 1987113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization of periplasmic redox proteins of Alcaligenes faecalis by a modified general method for fractionating gram-negative bacteria.
    Zhu Z; Sun D; Davidson VL
    J Bacteriol; 1999 Oct; 181(20):6540-2. PubMed ID: 10515948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Granular layer in the periplasmic space of gram-positive bacteria and fine structures of Enterococcus gallinarum and Streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections.
    Zuber B; Haenni M; Ribeiro T; Minnig K; Lopes F; Moreillon P; Dubochet J
    J Bacteriol; 2006 Sep; 188(18):6652-60. PubMed ID: 16952957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Planar asymmetric lipid bilayers of glycosphingolipid or lipopolysaccharide on one side and phospholipids on the other: membrane potential, porin function, and complement activation.
    Wiese A; Reiners JO; Brandenburg K; Kawahara K; Zähringer U; Seydel U
    Biophys J; 1996 Jan; 70(1):321-9. PubMed ID: 8770208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determining the Localization of Carbohydrate Active Enzymes Within Gram-Negative Bacteria.
    McLean R; Inglis GD; Mosimann SC; Uwiera RRE; Abbott DW
    Methods Mol Biol; 2017; 1588():199-208. PubMed ID: 28417370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.