BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9562524)

  • 1. The beta-hexosaminidase deficiency disorders: development of a clinical paradigm in the mouse.
    Tifft CJ; Proia RL
    Ann Med; 1997 Dec; 29(6):557-61. PubMed ID: 9562524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biology and potential strategies for the treatment of GM2 gangliosidoses.
    Chavany C; Jendoubi M
    Mol Med Today; 1998 Apr; 4(4):158-65. PubMed ID: 9572057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay-Sachs and Sandhoff diseases.
    Huang JQ; Trasler JM; Igdoura S; Michaud J; Hanal N; Gravel RA
    Hum Mol Genet; 1997 Oct; 6(11):1879-85. PubMed ID: 9302266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Recent advances in molecular genetics of GM2 gangliosidosis].
    Wakamatsu N
    Nihon Rinsho; 1995 Dec; 53(12):2988-93. PubMed ID: 8577047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism.
    Sango K; Yamanaka S; Hoffmann A; Okuda Y; Grinberg A; Westphal H; McDonald MP; Crawley JN; Sandhoff K; Suzuki K; Proia RL
    Nat Genet; 1995 Oct; 11(2):170-6. PubMed ID: 7550345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic evaluation of GM2 gangliosidoses by ELISA using anti-GM2 ganglioside antibodies.
    Tsuji D; Higashine Y; Matsuoka K; Sakuraba H; Itoh K
    Clin Chim Acta; 2007 Mar; 378(1-2):38-41. PubMed ID: 17196574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical consequences of mutations causing the GM2 gangliosidoses.
    Mahuran DJ
    Biochim Biophys Acta; 1999 Oct; 1455(2-3):105-38. PubMed ID: 10571007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment.
    Liu Y; Hoffmann A; Grinberg A; Westphal H; McDonald MP; Miller KM; Crawley JN; Sandhoff K; Suzuki K; Proia RL
    Proc Natl Acad Sci U S A; 1997 Jul; 94(15):8138-43. PubMed ID: 9223328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and molecular aspects of late-onset GM2-gangliosidosis: B1 variant as a prototype.
    Suzuki K; Vanier MT
    Dev Neurosci; 1991; 13(4-5):288-94. PubMed ID: 1840099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay-Sachs disease.
    Yamanaka S; Johnson MD; Grinberg A; Westphal H; Crawley JN; Taniike M; Suzuki K; Proia RL
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):9975-9. PubMed ID: 7937929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of murine Hexa gene leads to enzymatic deficiency and to neuronal lysosomal storage, similar to that observed in Tay-Sachs disease.
    Cohen-Tannoudji M; Marchand P; Akli S; Sheardown SA; Puech JP; Kress C; Gressens P; Nassogne MC; Beccari T; Muggleton-Harris AL
    Mamm Genome; 1995 Dec; 6(12):844-9. PubMed ID: 8747922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biochemistry of HEXA and HEXB gene mutations causing GM2 gangliosidosis.
    Mahuran DJ
    Biochim Biophys Acta; 1991 Feb; 1096(2):87-94. PubMed ID: 1825792
    [No Abstract]   [Full Text] [Related]  

  • 13. The biochemical basis of gangliosidoses.
    Sandhoff K; Conzelmann E
    Neuropediatrics; 1984 Sep; 15 Suppl():85-92. PubMed ID: 6242704
    [No Abstract]   [Full Text] [Related]  

  • 14. Reversibility of neuropathology in Tay-Sachs-related diseases.
    Cachón-González MB; Wang SZ; Ziegler R; Cheng SH; Cox TM
    Hum Mol Genet; 2014 Feb; 23(3):730-48. PubMed ID: 24057669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases.
    Phaneuf D; Wakamatsu N; Huang JQ; Borowski A; Peterson AC; Fortunato SR; Ritter G; Igdoura SA; Morales CR; Benoit G; Akerman BR; Leclerc D; Hanai N; Marth JD; Trasler JM; Gravel RA
    Hum Mol Genet; 1996 Jan; 5(1):1-14. PubMed ID: 8789434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective gene therapy in an authentic model of Tay-Sachs-related diseases.
    Cachón-González MB; Wang SZ; Lynch A; Ziegler R; Cheng SH; Cox TM
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10373-10378. PubMed ID: 16801539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversion of the biochemical defects in murine embryonic Sandhoff neurons using a bicistronic lentiviral vector encoding hexosaminidase alpha and beta.
    Arfi A; Zisling R; Richard E; Batista L; Poenaru L; Futerman AH; Caillaud C
    J Neurochem; 2006 Mar; 96(6):1572-9. PubMed ID: 16441513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Pro504 --> Ser substitution in the beta-subunit of beta-hexosaminidase A inhibits alpha-subunit hydrolysis of GM2 ganglioside, resulting in chronic Sandhoff disease.
    Hou Y; McInnes B; Hinek A; Karpati G; Mahuran D
    J Biol Chem; 1998 Aug; 273(33):21386-92. PubMed ID: 9694901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics and Therapies for GM2 Gangliosidosis.
    Cachon-Gonzalez MB; Zaccariotto E; Cox TM
    Curr Gene Ther; 2018; 18(2):68-89. PubMed ID: 29618308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In cellulo examination of a beta-alpha hybrid construct of beta-hexosaminidase A subunits, reported to interact with the GM2 activator protein and hydrolyze GM2 ganglioside.
    Sinici I; Yonekawa S; Tkachyova I; Gray SJ; Samulski RJ; Wakarchuk W; Mark BL; Mahuran DJ
    PLoS One; 2013; 8(3):e57908. PubMed ID: 23483939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.