These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 9562533)
1. Age and the human cochlear traveling wave delay. Ramotowski D; Kimberley B Ear Hear; 1998 Apr; 19(2):111-9. PubMed ID: 9562533 [TBL] [Abstract][Full Text] [Related]
5. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds. Hamdan AL; Abouchacra KS; Zeki Al Hazzouri AG; Zaytoun G Ear Hear; 2008 Jun; 29(3):360-77. PubMed ID: 18382377 [TBL] [Abstract][Full Text] [Related]
7. The effects of aging and hearing loss on distortion product otoacoustic emissions. Cilento BW; Norton SJ; Gates GA Otolaryngol Head Neck Surg; 2003 Oct; 129(4):382-9. PubMed ID: 14574293 [TBL] [Abstract][Full Text] [Related]
8. Effects of noise exposure on young adults with normal audiograms I: Electrophysiology. Prendergast G; Guest H; Munro KJ; Kluk K; Léger A; Hall DA; Heinz MG; Plack CJ Hear Res; 2017 Feb; 344():68-81. PubMed ID: 27816499 [TBL] [Abstract][Full Text] [Related]
9. Growth behavior of the 2 f1-f2 distortion product otoacoustic emission in tinnitus. Janssen T; Kummer P; Arnold W J Acoust Soc Am; 1998 Jun; 103(6):3418-30. PubMed ID: 9637029 [TBL] [Abstract][Full Text] [Related]
10. Predicting pure tone thresholds in normal and hearing-impaired ears with distortion product emission and age. Kimberley BP; Hernadi I; Lee AM; Brown DK Ear Hear; 1994 Jun; 15(3):199-209. PubMed ID: 8076718 [TBL] [Abstract][Full Text] [Related]
11. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342 [TBL] [Abstract][Full Text] [Related]
12. Search for Electrophysiological Indices of Hidden Hearing Loss in Humans: Click Auditory Brainstem Response Across Sound Levels and in Background Noise. Suresh CH; Krishnan A Ear Hear; 2021; 42(1):53-67. PubMed ID: 32675590 [TBL] [Abstract][Full Text] [Related]
13. Evoked otoacoustic emissions--an approach for monitoring cisplatin induced ototoxicity in children. Stavroulaki P; Apostolopoulos N; Segas J; Tsakanikos M; Adamopoulos G Int J Pediatr Otorhinolaryngol; 2001 May; 59(1):47-57. PubMed ID: 11376818 [TBL] [Abstract][Full Text] [Related]
14. The level and growth behavior of the 2 f1-f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss. Kummer P; Janssen T; Arnold W J Acoust Soc Am; 1998 Jun; 103(6):3431-44. PubMed ID: 9637030 [TBL] [Abstract][Full Text] [Related]
15. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra. Lai J; Bartlett EL Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530 [TBL] [Abstract][Full Text] [Related]
16. Distortion product emission features and the prediction of pure tone thresholds. Kimberley BP Laryngoscope; 1995 Apr; 105(4 Pt 1):349-53. PubMed ID: 7715375 [TBL] [Abstract][Full Text] [Related]
17. Distortion product emissions in humans. I. Basic properties in normally hearing subjects. Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():3-14. PubMed ID: 2110797 [TBL] [Abstract][Full Text] [Related]
19. Identifying dead regions in the cochlea: psychophysical tuning curves and tone detection in threshold-equalizing noise. Summers V; Molis MR; Müsch H; Walden BE; Surr RK; Cord MT Ear Hear; 2003 Apr; 24(2):133-42. PubMed ID: 12677110 [TBL] [Abstract][Full Text] [Related]
20. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions. Ortmann AJ; Abdala C Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]