BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 9563108)

  • 1. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants.
    Pienkowski D; Stephens GC; Doers TM; Hamilton DM
    Spine (Phila Pa 1976); 1998 Apr; 23(7):782-8. PubMed ID: 9563108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants.
    Dick JC; Bourgeault CA
    Spine (Phila Pa 1976); 2001 Aug; 26(15):1668-72. PubMed ID: 11474353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of transfixation and length of instrumentation on titanium and stainless steel transpedicular spine implants.
    Korovessis P; Baikousis A; Deligianni D; Mysirlis Y; Soucacos P
    J Spinal Disord; 2001 Apr; 14(2):109-17. PubMed ID: 11285422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design.
    Chen PQ; Lin SJ; Wu SS; So H
    Spine (Phila Pa 1976); 2003 May; 28(9):881-6; discussion 887. PubMed ID: 12942002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between 4.0-mm stainless steel and 4.75-mm titanium alloy single-rod spinal instrumentation for anterior thoracoscopic scoliosis surgery.
    Yoon SH; Ugrinow VL; Upasani VV; Pawelek JB; Newton PO
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2173-8. PubMed ID: 18794758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium versus stainless steel for anterior spinal fusions: an analysis of rod stress as a predictor of rod breakage during physiologic loading in a bovine model.
    Wedemeyer M; Parent S; Mahar A; Odell T; Swimmer T; Newton P
    Spine (Phila Pa 1976); 2007 Jan; 32(1):42-8. PubMed ID: 17202891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implant Material, Type of Fixation at the Shaft, and Position of Plate Modify Biomechanics of Distal Femur Plate Osteosynthesis.
    Kandemir U; Augat P; Konowalczyk S; Wipf F; von Oldenburg G; Schmidt U
    J Orthop Trauma; 2017 Aug; 31(8):e241-e246. PubMed ID: 28394844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of two materials for dynamic hip screw during fall and gait loading: titanium alloy and stainless steel.
    Taheri NS; Blicblau AS; Singh M
    J Orthop Sci; 2011 Nov; 16(6):805-13. PubMed ID: 21877191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel.
    Christensen FB; Dalstra M; Sejling F; Overgaard S; Bünger C
    Eur Spine J; 2000 Apr; 9(2):97-103. PubMed ID: 10823424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro biomechanical comparison of multistrand cables with conventional cervical stabilization.
    Weis JC; Cunningham BW; Kanayama M; Parker L; McAfee PC
    Spine (Phila Pa 1976); 1996 Sep; 21(18):2108-14. PubMed ID: 8893435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical assessment of titanium and stainless steel posterior spinal constructs: effects of absolute/relative loading and frequency on fatigue life and determination of failure modes.
    Stambough JL; Genaidy AM; Huston RL; Serhan H; El-khatib F; Sabri EH
    J Spinal Disord; 1997 Dec; 10(6):473-81. PubMed ID: 9438811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.
    Schildhauer TA; Robie B; Muhr G; Köller M
    J Orthop Trauma; 2006 Jul; 20(7):476-84. PubMed ID: 16891939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of rod contouring on spinal construct fatigue strength.
    Lindsey C; Deviren V; Xu Z; Yeh RF; Puttlitz CM
    Spine (Phila Pa 1976); 2006 Jul; 31(15):1680-7. PubMed ID: 16816763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.
    Jain R; Podworny N; Hearn T; Anderson GI; Schemitsch EH
    J Orthop Trauma; 1997 Oct; 11(7):490-5. PubMed ID: 9334950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: a mechanical and histologic analysis.
    Brown RN; Sexton BE; Gabriel Chu TM; Katona TR; Stewart KT; Kyung HM; Liu SS
    Am J Orthod Dentofacial Orthop; 2014 Apr; 145(4):496-504. PubMed ID: 24703288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation.
    Kok D; Firkins PJ; Wapstra FH; Veldhuizen AG
    BMC Musculoskelet Disord; 2013 Sep; 14():269. PubMed ID: 24047109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of femoral component material properties on cementless fixation in total hip arthroplasty. A comparison study between carbon composite, titanium alloy, and stainless steel.
    Otani T; Whiteside LA; White SE; McCarthy DS
    J Arthroplasty; 1993 Feb; 8(1):67-74. PubMed ID: 8436992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of magnetic and radiographic imaging artifact after using three types of metal rods: stainless steel, titanium, and vitallium.
    Knott PT; Mardjetko SM; Kim RH; Cotter TM; Dunn MM; Patel ST; Spencer MJ; Wilson AS; Tager DS
    Spine J; 2010 Sep; 10(9):789-94. PubMed ID: 20619749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical Performance of Charcot-Specific Implants.
    Wukich DK; Liu GT; Raspovic K; Vicenzi F
    J Foot Ankle Surg; 2021; 60(3):440-447. PubMed ID: 33612405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.