These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 9563505)
1. Structural plasticity of the feline leukaemia virus fusion peptide: a circular dichroism study. Davies SM; Kelly SM; Price NC; Bradshaw JP FEBS Lett; 1998 Apr; 425(3):415-8. PubMed ID: 9563505 [TBL] [Abstract][Full Text] [Related]
2. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers. Gray C; Tatulian SA; Wharton SA; Tamm LK Biophys J; 1996 May; 70(5):2275-86. PubMed ID: 9172751 [TBL] [Abstract][Full Text] [Related]
3. Modulation of lipid polymorphism by the feline leukemia virus fusion peptide: implications for the fusion mechanism. Davies SM; Epand RF; Bradshaw JP; Epand RM Biochemistry; 1998 Apr; 37(16):5720-9. PubMed ID: 9548958 [TBL] [Abstract][Full Text] [Related]
4. Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. Langosch D; Crane JM; Brosig B; Hellwig A; Tamm LK; Reed J J Mol Biol; 2001 Aug; 311(4):709-21. PubMed ID: 11518525 [TBL] [Abstract][Full Text] [Related]
6. pH-dependent self-association of influenza hemagglutinin fusion peptides in lipid bilayers. Han X; Tamm LK J Mol Biol; 2000 Dec; 304(5):953-65. PubMed ID: 11124039 [TBL] [Abstract][Full Text] [Related]
7. The antiviral activity of a synthetic peptide derived from the envelope SU glycoprotein of feline immunodeficiency virus maps in correspondence of an amphipathic helical segment. Massi C; Indino E; Lami C; Fissi A; Pieroni O; La Rosa C; Esposito F; Galoppini C; Rovero P; Bandecchi P; Bendinelli M; Garzelli C Biochem Biophys Res Commun; 1998 May; 246(1):160-5. PubMed ID: 9600086 [TBL] [Abstract][Full Text] [Related]
8. Homooligopeptides composed of hydrophobic amino acid residues interact in a specific manner by taking alpha-helix or beta-structure toward lipid bilayers. Lee S; Yoshitomi H; Morikawa M; Ando S; Takiguchi H; Inoue T; Sugihara G Biopolymers; 1995 Sep; 36(3):391-8. PubMed ID: 7669922 [TBL] [Abstract][Full Text] [Related]
9. Structure and self assembly of a retrovirus (FeLV) proline rich neutralization domain. Fontenot JD; Tjandra N; Ho C; Andrews PC; Montelaro RC J Biomol Struct Dyn; 1994 Feb; 11(4):821-36. PubMed ID: 8204217 [TBL] [Abstract][Full Text] [Related]
10. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus. Victor BL; Baptista AM; Soares CM J Chem Inf Model; 2012 Nov; 52(11):3001-12. PubMed ID: 23101989 [TBL] [Abstract][Full Text] [Related]
11. Conformation and interaction with the membrane models of the amino-terminal peptide of influenza virus hemagglutinin HA2 at fusion pH. Chang DK; Cheng SF; Trivedi VD Arch Biochem Biophys; 2001 Dec; 396(1):89-98. PubMed ID: 11716466 [TBL] [Abstract][Full Text] [Related]
12. Sendai virus internal fusion peptide: structural and functional characterization and a plausible mode of viral entry inhibition. Ghosh JK; Peisajovich SG; Shai Y Biochemistry; 2000 Sep; 39(38):11581-92. PubMed ID: 10995225 [TBL] [Abstract][Full Text] [Related]
13. Participation of two fusion peptides in measles virus-induced membrane fusion: emerging similarity with other paramyxoviruses. Samuel O; Shai Y Biochemistry; 2001 Feb; 40(5):1340-9. PubMed ID: 11170461 [TBL] [Abstract][Full Text] [Related]
14. Distinctive influence of two hexafluoro solvents on the structural stabilization of Bombyx mori silk fibroin protein and its derived peptides: 13C NMR and CD studies. Ha SW; Asakura T; Kishore R Biomacromolecules; 2006 Jan; 7(1):18-23. PubMed ID: 16398492 [TBL] [Abstract][Full Text] [Related]
16. Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. Tatulian SA; Tamm LK Biochemistry; 2000 Jan; 39(3):496-507. PubMed ID: 10642174 [TBL] [Abstract][Full Text] [Related]
17. Conformational mapping of the N-terminal peptide of HIV-1 gp41 in membrane environments using (13)C-enhanced Fourier transform infrared spectroscopy. Gordon LM; Mobley PW; Pilpa R; Sherman MA; Waring AJ Biochim Biophys Acta; 2002 Feb; 1559(2):96-120. PubMed ID: 11853678 [TBL] [Abstract][Full Text] [Related]
18. Fatty acids can substitute the HIV fusion peptide in lipid merging and fusion: an analogy between viral and palmitoylated eukaryotic fusion proteins. Lev N; Shai Y J Mol Biol; 2007 Nov; 374(1):220-30. PubMed ID: 17919659 [TBL] [Abstract][Full Text] [Related]
19. Conformation of a protein kinase C substrate NG(28-43), and its analog in aqueous and sodium dodecyl sulfate micelle solutions. Chang DK; Chien WJ; Arunkumar AI Biophys J; 1997 Feb; 72(2 Pt 1):554-66. PubMed ID: 9017186 [TBL] [Abstract][Full Text] [Related]
20. Conformational analysis of LYS(11-36), a peptide derived from the beta-sheet region of T4 lysozyme, in TFE and SDS. Najbar LV; Craik DJ; Wade JD; Salvatore D; McLeish MJ Biochemistry; 1997 Sep; 36(38):11525-33. PubMed ID: 9298973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]