These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 9563523)
1. Phospholamban domain I/cytochrome b5 transmembrane sequence chimeras do not inhibit SERCA2a. Kimura Y; Asahi M; Kurzydlowski K; Tada M; MacLennan DH FEBS Lett; 1998 Apr; 425(3):509-12. PubMed ID: 9563523 [TBL] [Abstract][Full Text] [Related]
2. Sites of regulatory interaction between calcium ATPases and phospholamban. MacLennan DH; Kimura Y; Toyofuku T Ann N Y Acad Sci; 1998 Sep; 853():31-42. PubMed ID: 10603934 [TBL] [Abstract][Full Text] [Related]
3. Reconstitution of the cytoplasmic interaction between phospholamban and Ca(2+)-ATPase of cardiac sarcoplasmic reticulum. Kimura Y; Inui M Mol Pharmacol; 2002 Mar; 61(3):667-73. PubMed ID: 11854448 [TBL] [Abstract][Full Text] [Related]
4. Amino acids Glu2 to Ile18 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca(2+)-ATPase of sarcoplasmic reticulum. Toyofuku T; Kurzydlowski K; Tada M; MacLennan DH J Biol Chem; 1994 Jan; 269(4):3088-94. PubMed ID: 7905483 [TBL] [Abstract][Full Text] [Related]
5. Phospholamban regulates the Ca2+-ATPase through intramembrane interactions. Kimura Y; Kurzydlowski K; Tada M; MacLennan DH J Biol Chem; 1996 Sep; 271(36):21726-31. PubMed ID: 8702967 [TBL] [Abstract][Full Text] [Related]
6. The vmax of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin-dependent phosphorylation or by interaction with phospholamban. Odermatt A; Kurzydlowski K; MacLennan DH J Biol Chem; 1996 Jun; 271(24):14206-13. PubMed ID: 8662932 [TBL] [Abstract][Full Text] [Related]
7. Identification of regions in the Ca(2+)-ATPase of sarcoplasmic reticulum that affect functional association with phospholamban. Toyofuku T; Kurzydlowski K; Tada M; MacLennan DH J Biol Chem; 1993 Feb; 268(4):2809-15. PubMed ID: 8428955 [TBL] [Abstract][Full Text] [Related]
8. Phospholamban domain Ib mutations influence functional interactions with the Ca2+-ATPase isoform of cardiac sarcoplasmic reticulum. Kimura Y; Asahi M; Kurzydlowski K; Tada M; MacLennan DH J Biol Chem; 1998 Jun; 273(23):14238-41. PubMed ID: 9603928 [TBL] [Abstract][Full Text] [Related]
9. Phospholamban inhibitory function is activated by depolymerization. Kimura Y; Kurzydlowski K; Tada M; MacLennan DH J Biol Chem; 1997 Jun; 272(24):15061-4. PubMed ID: 9182523 [TBL] [Abstract][Full Text] [Related]
10. Functional Co-expression of the canine cardiac Ca2+ pump and phospholamban in Spodoptera frugiperda (Sf21) cells reveals new insights on ATPase regulation. Autry JM; Jones LR J Biol Chem; 1997 Jun; 272(25):15872-80. PubMed ID: 9188486 [TBL] [Abstract][Full Text] [Related]
11. Intermolecular conformational coupling and free energy exchange enhance the catalytic efficiency of cardiac muscle SERCA2a following the relief of phospholamban inhibition. Mahaney JE; Albers RW; Waggoner JR; Kutchai HC; Froehlich JP Biochemistry; 2005 May; 44(21):7713-24. PubMed ID: 15909986 [TBL] [Abstract][Full Text] [Related]
12. Ca2+/calmodulin-dependent phosphorylation of the Ca2+-ATPase, uncoupled from phospholamban, stimulates Ca2+-pumping in native cardiac sarcoplasmic reticulum. Xu A; Narayanan N Biochem Biophys Res Commun; 1999 Apr; 258(1):66-72. PubMed ID: 10222236 [TBL] [Abstract][Full Text] [Related]
13. Reduced sarcoplasmic reticulum Ca2+ -ATPase activity and dephosphorylated phospholamban contribute to contractile dysfunction in human hibernating myocardium. Nef HM; Möllmann H; Skwara W; Bölck B; Schwinger RH; Hamm Ch; Kostin S; Schaper J; Elsässer A Mol Cell Biochem; 2006 Jan; 282(1-2):53-63. PubMed ID: 16317512 [TBL] [Abstract][Full Text] [Related]
14. Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice. Asahi M; Otsu K; Nakayama H; Hikoso S; Takeda T; Gramolini AO; Trivieri MG; Oudit GY; Morita T; Kusakari Y; Hirano S; Hongo K; Hirotani S; Yamaguchi O; Peterson A; Backx PH; Kurihara S; Hori M; MacLennan DH Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9199-204. PubMed ID: 15201433 [TBL] [Abstract][Full Text] [Related]
16. High-level coexpression of the canine cardiac calcium pump and phospholamban in Sf21 insect cells. Autry JM; Jones LR Ann N Y Acad Sci; 1998 Sep; 853():92-102. PubMed ID: 10603939 [TBL] [Abstract][Full Text] [Related]
17. Phospholamban-modulated Ca2+ transport in cardiac and slow twitch skeletal muscle sarcoplasmic reticulum. Movsesian MA; Morris GL; Wang JH; Krall J Second Messengers Phosphoproteins; 1992-1993; 14(3):151-61. PubMed ID: 1345340 [TBL] [Abstract][Full Text] [Related]
18. Phospholamban domain IB forms an interaction site with the loop between transmembrane helices M6 and M7 of sarco(endo)plasmic reticulum Ca2+ ATPases. Asahi M; Green NM; Kurzydlowski K; Tada M; MacLennan DH Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10061-6. PubMed ID: 11526231 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of phospholamban in slow-twitch skeletal muscle is associated with depressed contractile function and muscle remodeling. Song Q; Young KB; Chu G; Gulick J; Gerst M; Grupp IL; Robbins J; Kranias EG FASEB J; 2004 Jun; 18(9):974-6. PubMed ID: 15059971 [TBL] [Abstract][Full Text] [Related]
20. Membrane phosphorylation protects the cardiac sarcoplasmic reticulum Ca(2+)-ATPase against chlorinated oxidants in vitro. Antipenko AY; Kirchberger MA Cardiovasc Res; 1997 Oct; 36(1):67-77. PubMed ID: 9415274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]