BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9563830)

  • 1. Extramitochondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV.
    Napiwotzki J; Kadenbach B
    Biol Chem; 1998 Mar; 379(3):335-9. PubMed ID: 9563830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c oxidase from eucaryotes but not from procaryotes is allosterically inhibited by ATP.
    Follmann K; Arnold S; Ferguson-Miller S; Kadenbach B
    Biochem Mol Biol Int; 1998 Aug; 45(5):1047-55. PubMed ID: 9739469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intramitochondrial ATP/ADP-ratio controls cytochrome c oxidase activity allosterically.
    Arnold S; Kadenbach B
    FEBS Lett; 1999 Jan; 443(2):105-8. PubMed ID: 9989584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADP increases the affinity for cytochrome c by interaction with the matrix side of bovine heart cytochrome c oxidase.
    Hüther FJ; Kadenbach B
    Biochem Biophys Res Commun; 1987 Sep; 147(3):1268-75. PubMed ID: 2822043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP and ADP bind to cytochrome c oxidase and regulate its activity.
    Napiwotzki J; Shinzawa-Itoh K; Yoshikawa S; Kadenbach B
    Biol Chem; 1997 Sep; 378(9):1013-21. PubMed ID: 9348111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial cytochrome c oxidase is inhibited by ATP only at very high ATP/ADP ratios.
    Ramzan R; Schaper AK; Weber P; Rhiel A; Siddiq MS; Vogt S
    Biol Chem; 2017 Jun; 398(7):737-750. PubMed ID: 27926476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP.
    Arnold S; Goglia F; Kadenbach B
    Eur J Biochem; 1998 Mar; 252(2):325-30. PubMed ID: 9523704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the H+/e- stoichiometry of cytochrome c oxidase from bovine heart by intramitochondrial ATP/ADP ratios.
    Frank V; Kadenbach B
    FEBS Lett; 1996 Mar; 382(1-2):121-4. PubMed ID: 8612732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-specific regulation of bovine heart cytochrome-c oxidase activity by ADP via interaction with subunit VIa.
    Anthony G; Reimann A; Kadenbach B
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1652-6. PubMed ID: 8383320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular switch in cytochrome C oxidase turns on thermogenesis in heart at low work load.
    Belyanovich L; Arnold S; Köhnke D; Kadenbach B
    Biochem Biophys Res Commun; 1996 Dec; 229(2):485-7. PubMed ID: 8954924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-specific regulation of cytochrome c oxidase efficiency by nucleotides.
    Rohdich F; Kadenbach B
    Biochemistry; 1993 Aug; 32(33):8499-503. PubMed ID: 8395207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of respiration and energy transduction in cytochrome c oxidase isozymes by allosteric effectors.
    Kadenbach B; Frank V; Rieger T; Napiwotzki J
    Mol Cell Biochem; 1997 Sep; 174(1-2):131-5. PubMed ID: 9309677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of energy transduction and electron transfer in cytochrome c oxidase by adenine nucleotides.
    Kadenbach B; Napiwotzki J; Frank V; Arnold S; Exner S; Hüttemann M
    J Bioenerg Biomembr; 1998 Feb; 30(1):25-33. PubMed ID: 9623802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of cytochrome c oxidase by interaction of ATP at two binding sites, one on subunit VIa.
    Taanman JW; Turina P; Capaldi RA
    Biochemistry; 1994 Oct; 33(39):11833-41. PubMed ID: 7918401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholate Disrupts Regulatory Functions of Cytochrome c Oxidase.
    Ramzan R; Napiwotzki J; Weber P; Kadenbach B; Vogt S
    Cells; 2021 Jun; 10(7):. PubMed ID: 34201437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase.
    Arnold S; Kadenbach B
    Eur J Biochem; 1997 Oct; 249(1):350-4. PubMed ID: 9363790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of 3'-O-(1-naphthoyl)adenosine 5'-diphosphate, a fluorescent adenosine 5'-diphosphate analogue, with the adenosine 5'-diphosphate/adenosine 5'-triphosphate carrier protein in the mitochondrial membrane.
    Block MR; Lauquin GJ; Vignais PV
    Biochemistry; 1982 Oct; 21(22):5451-7. PubMed ID: 7171567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of adenosine 5'-triphosphate and adenosine 5'-diphosphate on the oxidation of cytochrome c by cytochrome c oxidase.
    Smith L; Davies HC; Nava ME
    Biochemistry; 1980 Apr; 19(8):1613-7. PubMed ID: 6246928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation.
    Bender E; Kadenbach B
    FEBS Lett; 2000 Jan; 466(1):130-4. PubMed ID: 10648827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP induces conformational changes in mitochondrial cytochrome c oxidase. Effect on the cytochrome c binding site.
    Bisson R; Schiavo G; Montecucco C
    J Biol Chem; 1987 May; 262(13):5992-8. PubMed ID: 3032951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.