These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9563941)

  • 1. An analysis of the origins of a cooperative binding energy of dimerization.
    Williams DH; Maguire AJ; Tsuzuki W; Westwell MS
    Science; 1998 May; 280(5364):711-4. PubMed ID: 9563941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative binding interactions of glycopeptide antibiotics.
    Shiozawa H; Chia BC; Davies NL; Zerella R; Williams DH
    J Am Chem Soc; 2002 Apr; 124(15):3914-9. PubMed ID: 11942828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of structural tightening, as opposed to partially bound States, in the determination of chemical shift changes at noncovalently bonded interfaces.
    Williams DH; Davies NL; Koivisto JJ
    J Am Chem Soc; 2004 Nov; 126(43):14267-72. PubMed ID: 15506794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of ristocetin A in complex with a bacterial cell-wall mimetic.
    Nahoum V; Spector S; Loll PJ
    Acta Crystallogr D Biol Crystallogr; 2009 Aug; 65(Pt 8):832-8. PubMed ID: 19622867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Configurational entropy and cooperativity between ligand binding and dimerization in glycopeptide antibiotics.
    Jusuf S; Loll PJ; Axelsen PH
    J Am Chem Soc; 2003 Apr; 125(13):3988-94. PubMed ID: 12656635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimerization of A82846B, vancomycin and ristocetin: influence on antibiotic complexation with cell wall model peptides.
    Linsdell H; Toiron C; Bruix M; Rivas G; Menéndez M
    J Antibiot (Tokyo); 1996 Feb; 49(2):181-93. PubMed ID: 8621360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperativity and anti-cooperativity between ligand binding and the dimerization of ristocetin A: asymmetry of a homodimer complex and implications for signal transduction.
    Cho YR; Maguire AJ; Try AC; Westwell MS; Groves P; Williams DH
    Chem Biol; 1996 Mar; 3(3):207-15. PubMed ID: 8807847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncovalent interactions: defining cooperativity. Ligand binding aided by reduced dynamic behavior of receptors. Binding of bacterial cell wall analogues to ristocetin A.
    Williams DH; Davies NL; Zerella R; Bardsley B
    J Am Chem Soc; 2004 Feb; 126(7):2042-9. PubMed ID: 14971938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The formation of heterodimers by vancomycin group antibiotics.
    Staroske T; O'Brien DP; Jørgensen TJ; Roepstorff P; Williams DH; Heck AJ
    Chemistry; 2000 Feb; 6(3):504-9. PubMed ID: 10747417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic barriers and ordering of non-covalently bound states.
    O'Brien SW; Shiozawa H; Zerella R; O'Brien DP; Williams DH
    Org Biomol Chem; 2003 Feb; 1(3):472-7. PubMed ID: 12926247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vancomycin: ligand recognition, dimerization and super-complex formation.
    Jia Z; O'Mara ML; Zuegg J; Cooper MA; Mark AE
    FEBS J; 2013 Mar; 280(5):1294-307. PubMed ID: 23298227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of an asymmetric dimer relevant to the mode of action of the glycopeptide antibiotics.
    Groves P; Searle MS; Mackay JP; Williams DH
    Structure; 1994 Aug; 2(8):747-54. PubMed ID: 7994574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward an estimation of binding constants in aqueous solution: studies of associations of vancomycin group antibiotics.
    Williams DH; Searle MS; Mackay JP; Gerhard U; Maplestone RA
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1172-8. PubMed ID: 8433979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of configurational entropy in biochemical cooperativity.
    Jusuf S; Loll PJ; Axelsen PH
    J Am Chem Soc; 2002 Apr; 124(14):3490-1. PubMed ID: 11929222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of capillary electrophoresis to measure dimerization of glycopeptide antibiotics.
    LeTourneau DL; Allen NE
    Anal Biochem; 1997 Mar; 246(1):62-6. PubMed ID: 9056183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescent ligand for binding studies with glycopeptide antibiotics of the vancomycin class.
    Popieniek PH; Pratt RF
    Anal Biochem; 1987 Aug; 165(1):108-13. PubMed ID: 3688425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of the complexes between vancomycin and cell-wall precursor analogs.
    Nitanai Y; Kikuchi T; Kakoi K; Hanamaki S; Fujisawa I; Aoki K
    J Mol Biol; 2009 Feb; 385(5):1422-32. PubMed ID: 18976660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular interactions between glycopeptide vancomycin and bacterial cell wall peptide analogues.
    Xing B; Jiang T; Wu X; Liew R; Zhou J; Zhang D; Yeow EK
    Chemistry; 2011 Dec; 17(50):14170-7. PubMed ID: 22083883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of vancomycin group antibiotics to D-alanine and D-lactate presenting self-assembled monolayers.
    Cooper MA; Fiorini MT; Abell C; Williams DH
    Bioorg Med Chem; 2000 Nov; 8(11):2609-16. PubMed ID: 11092546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired synthetic receptor molecules towards mimicry of vancomycin.
    Monnee MC; Brouwer AJ; Verbeek LM; van Wageningen AM; Liskamp RM
    Bioorg Med Chem Lett; 2001 Jun; 11(12):1521-5. PubMed ID: 11412973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.