These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
616 related articles for article (PubMed ID: 9563950)
21. Cytoplasmic CUG RNA foci are insufficient to elicit key DM1 features. Dansithong W; Wolf CM; Sarkar P; Paul S; Chiang A; Holt I; Morris GE; Branco D; Sherwood MC; Comai L; Berul CI; Reddy S PLoS One; 2008; 3(12):e3968. PubMed ID: 19092997 [TBL] [Abstract][Full Text] [Related]
22. MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. Warf MB; Berglund JA RNA; 2007 Dec; 13(12):2238-51. PubMed ID: 17942744 [TBL] [Abstract][Full Text] [Related]
23. Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Seznec H; Agbulut O; Sergeant N; Savouret C; Ghestem A; Tabti N; Willer JC; Ourth L; Duros C; Brisson E; Fouquet C; Butler-Browne G; Delacourte A; Junien C; Gourdon G Hum Mol Genet; 2001 Nov; 10(23):2717-26. PubMed ID: 11726559 [TBL] [Abstract][Full Text] [Related]
24. The structural basis of myotonic dystrophy from the crystal structure of CUG repeats. Mooers BH; Logue JS; Berglund JA Proc Natl Acad Sci U S A; 2005 Nov; 102(46):16626-31. PubMed ID: 16269545 [TBL] [Abstract][Full Text] [Related]
25. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Charlet-B N; Savkur RS; Singh G; Philips AV; Grice EA; Cooper TA Mol Cell; 2002 Jul; 10(1):45-53. PubMed ID: 12150906 [TBL] [Abstract][Full Text] [Related]
27. Myotonic dystrophy: clinical and molecular parallels between myotonic dystrophy type 1 and type 2. Ranum LP; Day JW Curr Neurol Neurosci Rep; 2002 Sep; 2(5):465-70. PubMed ID: 12169228 [TBL] [Abstract][Full Text] [Related]
28. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy. Wojtkowiak-Szlachcic A; Taylor K; Stepniak-Konieczna E; Sznajder LJ; Mykowska A; Sroka J; Thornton CA; Sobczak K Nucleic Acids Res; 2015 Mar; 43(6):3318-31. PubMed ID: 25753670 [TBL] [Abstract][Full Text] [Related]
29. Small molecule kinase inhibitors alleviate different molecular features of myotonic dystrophy type 1. Wojciechowska M; Taylor K; Sobczak K; Napierala M; Krzyzosiak WJ RNA Biol; 2014; 11(6):742-54. PubMed ID: 24824895 [TBL] [Abstract][Full Text] [Related]
30. Myotonic dystrophy: RNA pathogenesis comes into focus. Ranum LP; Day JW Am J Hum Genet; 2004 May; 74(5):793-804. PubMed ID: 15065017 [TBL] [Abstract][Full Text] [Related]
31. HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence. Kim DH; Langlois MA; Lee KB; Riggs AD; Puymirat J; Rossi JJ Nucleic Acids Res; 2005; 33(12):3866-74. PubMed ID: 16027111 [TBL] [Abstract][Full Text] [Related]
32. Tackling the pathogenesis of RNA nuclear retention in myotonic dystrophy. Mastroyiannopoulos NP; Shammas C; Phylactou LA Biol Cell; 2010 Jul; 102(9):515-23. PubMed ID: 20690904 [TBL] [Abstract][Full Text] [Related]
33. A flow cytometry-based screen identifies MBNL1 modulators that rescue splicing defects in myotonic dystrophy type I. Zhang F; Bodycombe NE; Haskell KM; Sun YL; Wang ET; Morris CA; Jones LH; Wood LD; Pletcher MT Hum Mol Genet; 2017 Aug; 26(16):3056-3068. PubMed ID: 28535287 [TBL] [Abstract][Full Text] [Related]
34. Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Ho TH; Bundman D; Armstrong DL; Cooper TA Hum Mol Genet; 2005 Jun; 14(11):1539-47. PubMed ID: 15843400 [TBL] [Abstract][Full Text] [Related]
35. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Lin X; Miller JW; Mankodi A; Kanadia RN; Yuan Y; Moxley RT; Swanson MS; Thornton CA Hum Mol Genet; 2006 Jul; 15(13):2087-97. PubMed ID: 16717059 [TBL] [Abstract][Full Text] [Related]
36. Reduced cytoplasmic MBNL1 is an early event in a brain-specific mouse model of myotonic dystrophy. Wang PY; Lin YM; Wang LH; Kuo TY; Cheng SJ; Wang GS Hum Mol Genet; 2017 Jun; 26(12):2247-2257. PubMed ID: 28369378 [TBL] [Abstract][Full Text] [Related]
37. A muscleblind knockout model for myotonic dystrophy. Kanadia RN; Johnstone KA; Mankodi A; Lungu C; Thornton CA; Esson D; Timmers AM; Hauswirth WW; Swanson MS Science; 2003 Dec; 302(5652):1978-80. PubMed ID: 14671308 [TBL] [Abstract][Full Text] [Related]
38. Gain of RNA function in pathological cases: Focus on myotonic dystrophy. Klein AF; Gasnier E; Furling D Biochimie; 2011 Nov; 93(11):2006-12. PubMed ID: 21763392 [TBL] [Abstract][Full Text] [Related]
39. Pathogenic mechanisms of myotonic dystrophy. Lee JE; Cooper TA Biochem Soc Trans; 2009 Dec; 37(Pt 6):1281-6. PubMed ID: 19909263 [TBL] [Abstract][Full Text] [Related]
40. New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats. Laurent FX; Sureau A; Klein AF; Trouslard F; Gasnier E; Furling D; Marie J Nucleic Acids Res; 2012 Apr; 40(7):3159-71. PubMed ID: 22156369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]