These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 9564050)

  • 1. RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation.
    de la Torre-Ruiz MA; Green CM; Lowndes NF
    EMBO J; 1998 May; 17(9):2687-98. PubMed ID: 9564050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.
    Vialard JE; Gilbert CS; Green CM; Lowndes NF
    EMBO J; 1998 Oct; 17(19):5679-88. PubMed ID: 9755168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1- and Rad53-dependent checkpoint in budding yeast.
    Neecke H; Lucchini G; Longhese MP
    EMBO J; 1999 Aug; 18(16):4485-97. PubMed ID: 10449414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Interaction between checkpoint genes RAD9, RAD17, RAD24, and RAD53 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation].
    Koltovaia NA; Nikulushkina IuV; Kadyshevskaia EIu; Roshchina MP; Devin AB
    Genetika; 2008 Aug; 44(8):1045-55. PubMed ID: 18825953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage.
    Paulovich AG; Margulies RU; Garvik BM; Hartwell LH
    Genetics; 1997 Jan; 145(1):45-62. PubMed ID: 9017389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Interaction between checkpoint genes RAD9, RAD17, RAD24, and RAD53 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation].
    Koltovaia NA; Nikulushkina IuV; Poshchina MP; Devin AB
    Genetika; 2008 Jun; 44(6):761-70. PubMed ID: 18727386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Saccharomyces cerevisiae DNA damage checkpoint is required for efficient repair of double strand breaks by non-homologous end joining.
    de la Torre-Ruiz M; Lowndes NF
    FEBS Lett; 2000 Feb; 467(2-3):311-5. PubMed ID: 10675560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast.
    Gardner R; Putnam CW; Weinert T
    EMBO J; 1999 Jun; 18(11):3173-85. PubMed ID: 10357828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair.
    Gerald JN; Benjamin JM; Kron SJ
    J Cell Sci; 2002 Apr; 115(Pt 8):1749-57. PubMed ID: 11950891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway.
    Kondo T; Matsumoto K; Sugimoto K
    Mol Cell Biol; 1999 Feb; 19(2):1136-43. PubMed ID: 9891048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G2/M checkpoint genes of Saccharomyces cerevisiae: further evidence for roles in DNA replication and/or repair.
    Lydall D; Weinert T
    Mol Gen Genet; 1997 Nov; 256(6):638-51. PubMed ID: 9435789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cdc20, a beta-transducin homologue, links RAD9-mediated G2/M checkpoint control to mitosis in Saccharomyces cerevisiae.
    Lim HH; Surana U
    Mol Gen Genet; 1996 Nov; 253(1-2):138-48. PubMed ID: 9003297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cisplatin DNA cross-links do not inhibit S-phase and cause only a G2/M arrest in Saccharomyces cerevisiae.
    Grossmann KF; Brown JC; Moses RE
    Mutat Res; 1999 May; 434(1):29-39. PubMed ID: 10377946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential regulation of two closely clustered yeast genes, MAG1 and DDI1, by cell-cycle checkpoints.
    Zhu Y; Xiao W
    Nucleic Acids Res; 1998 Dec; 26(23):5402-8. PubMed ID: 9826765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae.
    Navas TA; Sanchez Y; Elledge SJ
    Genes Dev; 1996 Oct; 10(20):2632-43. PubMed ID: 8895664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase.
    Pellicioli A; Lucca C; Liberi G; Marini F; Lopes M; Plevani P; Romano A; Di Fiore PP; Foiani M
    EMBO J; 1999 Nov; 18(22):6561-72. PubMed ID: 10562568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms.
    Kondo T; Wakayama T; Naiki T; Matsumoto K; Sugimoto K
    Science; 2001 Oct; 294(5543):867-70. PubMed ID: 11679674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion.
    Grandin N; Bailly A; Charbonneau M
    Biol Cell; 2005 Oct; 97(10):799-814. PubMed ID: 15760303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p.
    Paciotti V; Lucchini G; Plevani P; Longhese MP
    EMBO J; 1998 Jul; 17(14):4199-209. PubMed ID: 9670034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants.
    Jia X; Weinert T; Lydall D
    Genetics; 2004 Feb; 166(2):753-64. PubMed ID: 15020465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.