These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9564714)

  • 1. Lactate/H+ transport in skeletal muscle from spinal-cord-injured patients.
    Pilegaard H; Mohr T; Kjaer M; Juel C
    Scand J Med Sci Sports; 1998 Apr; 8(2):98-101. PubMed ID: 9564714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate transport studied in sarcolemmal giant vesicles from human muscle biopsies: relation to training status.
    Pilegaard H; Bangsbo J; Richter EA; Juel C
    J Appl Physiol (1985); 1994 Oct; 77(4):1858-62. PubMed ID: 7836210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle fibre type transformation following spinal cord injury.
    Burnham R; Martin T; Stein R; Bell G; MacLean I; Steadward R
    Spinal Cord; 1997 Feb; 35(2):86-91. PubMed ID: 9044514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle.
    Pilegaard H; Domino K; Noland T; Juel C; Hellsten Y; Halestrap AP; Bangsbo J
    Am J Physiol; 1999 Feb; 276(2):E255-61. PubMed ID: 9950784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals.
    Mohr T; Andersen JL; Biering-Sørensen F; Galbo H; Bangsbo J; Wagner A; Kjaer M
    Spinal Cord; 1997 Jan; 35(1):1-16. PubMed ID: 9025213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle lactate transport studied in sarcolemmal giant vesicles: dependence on fibre type and age.
    Juel C; Honig A; Pilegaard H
    Acta Physiol Scand; 1991 Dec; 143(4):361-5. PubMed ID: 1815471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate transport studied in sarcolemmal giant vesicles from rat skeletal muscles: effect of denervation.
    Pilegaard H; Juel C
    Am J Physiol; 1995 Oct; 269(4 Pt 1):E679-82. PubMed ID: 7485481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle lactate transport studied in sarcolemmal giant vesicles.
    Juel C
    Biochim Biophys Acta; 1991 May; 1065(1):15-20. PubMed ID: 2043648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry and pH dependency of the lactate/proton carrier in skeletal muscle studied with rat sarcolemmal giant vesicles.
    Juel C
    Biochim Biophys Acta; 1996 Aug; 1283(1):106-10. PubMed ID: 8765101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle pH regulation: role of training.
    Juel C
    Acta Physiol Scand; 1998 Mar; 162(3):359-66. PubMed ID: 9578382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of lactate transport in sarcolemmal giant vesicles obtained from human skeletal muscle.
    Juel C; Kristiansen S; Pilegaard H; Wojtaszewski J; Richter EA
    J Appl Physiol (1985); 1994 Mar; 76(3):1031-6. PubMed ID: 8005842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of prior eccentric contractions on lactate/H+ transport in rat skeletal muscle.
    Pilegaard H; Asp S
    Am J Physiol; 1998 Mar; 274(3):E554-9. PubMed ID: 9530141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cellular pH in skeletal muscle fiber types, studied with sarcolemmal giant vesicles obtained from rat muscles.
    Juel C
    Biochim Biophys Acta; 1995 Mar; 1265(2-3):127-32. PubMed ID: 7696341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate/proton co-transport in skeletal muscle: regulation and importance for pH homeostasis.
    Juel C
    Acta Physiol Scand; 1996 Mar; 156(3):369-74. PubMed ID: 8729697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate/H+ transport kinetics in rat skeletal muscle related to fibre type and changes in transport capacity.
    Juel C; Pilegaard H
    Pflugers Arch; 1998 Jul; 436(4):560-4. PubMed ID: 9683729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic muscle stimulation increases lactate transport in rat skeletal muscle.
    McCullagh KJ; Juel C; O'Brien M; Bonen A
    Mol Cell Biochem; 1996 Mar; 156(1):51-7. PubMed ID: 8709976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactate transport studied in sarcolemmal giant vesicles from rats: effect of training.
    Pilegaard H; Juel C; Wibrand F
    Am J Physiol; 1993 Feb; 264(2 Pt 1):E156-60. PubMed ID: 8447380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle mitochondrial mass is linked to lipid and metabolic profile in individuals with spinal cord injury.
    O'Brien LC; Chen Q; Savas J; Lesnefsky EJ; Gorgey AS
    Eur J Appl Physiol; 2017 Nov; 117(11):2137-2147. PubMed ID: 28864949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactate transport by skeletal muscle sarcolemmal vesicles.
    McDermott JC; Bonen A
    Mol Cell Biochem; 1993 May; 122(2):113-21. PubMed ID: 8232242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.
    Bangsbo J; Johansen L; Graham T; Saltin B
    J Physiol; 1993 Mar; 462():115-33. PubMed ID: 8331579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.