These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Site-directed mutagenesis of the beta subunit of tryptophan synthase from Salmonella typhimurium. Role of active site glutamic acid 350. Kayastha AM; Sawa Y; Nagata S; Miles EW J Biol Chem; 1991 Apr; 266(12):7618-25. PubMed ID: 1673461 [TBL] [Abstract][Full Text] [Related]
43. Detection and identification of intermediates in the reaction of L-serine with Escherichia coli tryptophan synthase via rapid-scanning ultraviolet-visible spectroscopy. Drewe WF; Dunn MF Biochemistry; 1985 Jul; 24(15):3977-87. PubMed ID: 3931672 [TBL] [Abstract][Full Text] [Related]
45. The reaction of indole with the aminoacrylate intermediate of Salmonella typhimurium tryptophan synthase: observation of a primary kinetic isotope effect with 3-[(2)H]indole. Cash MT; Miles EW; Phillips RS Arch Biochem Biophys; 2004 Dec; 432(2):233-43. PubMed ID: 15542062 [TBL] [Abstract][Full Text] [Related]
46. Allosteric communication of tryptophan synthase. Functional and regulatory properties of the beta S178P mutant. Marabotti A; De Biase D; Tramonti A; Bettati S; Mozzarelli A J Biol Chem; 2001 May; 276(21):17747-53. PubMed ID: 11278986 [TBL] [Abstract][Full Text] [Related]
48. Protonation states and catalysis: Molecular dynamics studies of intermediates in tryptophan synthase. Huang YM; You W; Caulkins BG; Dunn MF; Mueller LJ; Chang CE Protein Sci; 2016 Jan; 25(1):166-83. PubMed ID: 26013176 [TBL] [Abstract][Full Text] [Related]
49. BetaQ114N and betaT110V mutations reveal a critically important role of the substrate alpha-carboxylate site in the reaction specificity of tryptophan synthase. Blumenstein L; Domratcheva T; Niks D; Ngo H; Seidel R; Dunn MF; Schlichting I Biochemistry; 2007 Dec; 46(49):14100-16. PubMed ID: 18004874 [TBL] [Abstract][Full Text] [Related]
50. The role of the hinge region of the beta 2-subunit in beta-replacement specificity of tryptophan synthase from Escherichia coli. Analysis of proteolytically modified beta species cleaved by endoproteinase Glu-C. Linkens HJ; Bartholmes P; Kaufmann M J Biol Chem; 1994 Apr; 269(13):9783-9. PubMed ID: 7908288 [TBL] [Abstract][Full Text] [Related]
51. Evidence that cysteine 298 is in the active site of tryptophan indole-lyase. Phillips RS; Gollnick PD J Biol Chem; 1989 Jun; 264(18):10627-32. PubMed ID: 2659590 [TBL] [Abstract][Full Text] [Related]
52. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway. Strambini GB; Cioni P; Cook PF Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597 [TBL] [Abstract][Full Text] [Related]
53. Characterization of the S272A,D site-directed mutations of O-acetylserine sulfhydrylase: involvement of the pyridine ring in the alpha,beta-elimination reaction. Daum S; Tai CH; Cook PF Biochemistry; 2003 Jan; 42(1):106-13. PubMed ID: 12515544 [TBL] [Abstract][Full Text] [Related]
54. Phosphorus 31 nuclear magnetic resonance study of tryptophanase. Pyridoxal phosphate-binding site. Schnackerz KD; Snell EE J Biol Chem; 1983 Apr; 258(8):4839-41. PubMed ID: 6339506 [TBL] [Abstract][Full Text] [Related]
55. NMR Crystallography of a Carbanionic Intermediate in Tryptophan Synthase: Chemical Structure, Tautomerization, and Reaction Specificity. Caulkins BG; Young RP; Kudla RA; Yang C; Bittbauer TJ; Bastin B; Hilario E; Fan L; Marsella MJ; Dunn MF; Mueller LJ J Am Chem Soc; 2016 Nov; 138(46):15214-15226. PubMed ID: 27779384 [TBL] [Abstract][Full Text] [Related]
56. Sequence similarities between tryptophan synthase beta subunit and other pyridoxal-phosphate-dependent enzymes. Bork P; Rohde K Biochem Biophys Res Commun; 1990 Sep; 171(3):1319-25. PubMed ID: 2222447 [TBL] [Abstract][Full Text] [Related]
57. Analysis of the pH- and ligand-induced spectral transitions of tryptophanase: activation of the coenzyme at the early steps of the catalytic cycle. Ikushiro H; Hayashi H; Kawata Y; Kagamiyama H Biochemistry; 1998 Mar; 37(9):3043-52. PubMed ID: 9485457 [TBL] [Abstract][Full Text] [Related]
58. Product binding to the alpha-carboxyl subsite results in a conformational change at the active site of O-acetylserine sulfhydrylase-A: evidence from fluorescence spectroscopy. McClure GD; Cook PF Biochemistry; 1994 Feb; 33(7):1674-83. PubMed ID: 8110769 [TBL] [Abstract][Full Text] [Related]
59. A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst. Rege VD; Kredich NM; Tai CH; Karsten WE; Schnackerz KD; Cook PF Biochemistry; 1996 Oct; 35(41):13485-93. PubMed ID: 8873618 [TBL] [Abstract][Full Text] [Related]
60. Acidic residues important for substrate binding and cofactor reactivity in eukaryotic ornithine decarboxylase identified by alanine scanning mutagenesis. Osterman AL; Kinch LN; Grishin NV; Phillips MA J Biol Chem; 1995 May; 270(20):11797-802. PubMed ID: 7744828 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]