These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 9565671)
1. In vitro characterization of iron-phytosiderophore interaction with maize root plasma membranes: evidences for slow association kinetics. von Wirén N; Gibrat R; Briat JF Biochim Biophys Acta; 1998 Apr; 1371(1):143-55. PubMed ID: 9565671 [TBL] [Abstract][Full Text] [Related]
2. Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Xiong H; Kakei Y; Kobayashi T; Guo X; Nakazono M; Takahashi H; Nakanishi H; Shen H; Zhang F; Nishizawa NK; Zuo Y Plant Cell Environ; 2013 Oct; 36(10):1888-902. PubMed ID: 23496756 [TBL] [Abstract][Full Text] [Related]
3. Reduced Cd accumulation in Zea mays: a protective role for phytosiderophores? Hill KA; Lion LW; Ahner BA Environ Sci Technol; 2002 Dec; 36(24):5363-8. PubMed ID: 12521162 [TBL] [Abstract][Full Text] [Related]
4. [Study on the structure activity relationship of a phytosiderophore, mugineic acid]. Nishimaru T Yakugaku Zasshi; 2006 Jul; 126(7):473-9. PubMed ID: 16819268 [TBL] [Abstract][Full Text] [Related]
5. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. Schaaf G; Ludewig U; Erenoglu BE; Mori S; Kitahara T; von Wirén N J Biol Chem; 2004 Mar; 279(10):9091-6. PubMed ID: 14699112 [TBL] [Abstract][Full Text] [Related]
6. Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron(III). von Wirén N; Khodr H; Hider RC Plant Physiol; 2000 Nov; 124(3):1149-58. PubMed ID: 11080292 [TBL] [Abstract][Full Text] [Related]
7. A Vacuolar Phytosiderophore Transporter Alters Iron and Zinc Accumulation in Polished Rice Grains. Che J; Yokosho K; Yamaji N; Ma JF Plant Physiol; 2019 Sep; 181(1):276-288. PubMed ID: 31331995 [TBL] [Abstract][Full Text] [Related]
8. Iron acquisition by phytosiderophores contributes to cadmium tolerance. Meda AR; Scheuermann EB; Prechsl UE; Erenoglu B; Schaaf G; Hayen H; Weber G; von Wirén N Plant Physiol; 2007 Apr; 143(4):1761-73. PubMed ID: 17337530 [TBL] [Abstract][Full Text] [Related]
9. Characterizing the crucial components of iron homeostasis in the maize mutants ys1 and ys3. Nozoye T; Nakanishi H; Nishizawa NK PLoS One; 2013; 8(5):e62567. PubMed ID: 23667491 [TBL] [Abstract][Full Text] [Related]
10. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. Bashir K; Inoue H; Nagasaka S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK J Biol Chem; 2006 Oct; 281(43):32395-402. PubMed ID: 16926158 [TBL] [Abstract][Full Text] [Related]
11. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Curie C; Panaviene Z; Loulergue C; Dellaporta SL; Briat JF; Walker EL Nature; 2001 Jan; 409(6818):346-9. PubMed ID: 11201743 [TBL] [Abstract][Full Text] [Related]
12. The plasma membrane proteome of maize roots grown under low and high iron conditions. Hopff D; Wienkoop S; Lüthje S J Proteomics; 2013 Oct; 91():605-18. PubMed ID: 23353019 [TBL] [Abstract][Full Text] [Related]
13. Further characterization of ferric-phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley. Ueno D; Yamaji N; Ma JF J Exp Bot; 2009; 60(12):3513-20. PubMed ID: 19549626 [TBL] [Abstract][Full Text] [Related]
14. Phytosiderophores revisited: 2'-deoxymugineic acid-mediated iron uptake triggers nitrogen assimilation in rice (Oryza sativa L.) seedlings. Araki R; Namba K; Murata Y; Murata J Plant Signal Behav; 2015; 10(6):e1031940. PubMed ID: 26023724 [TBL] [Abstract][Full Text] [Related]
15. Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter. Roberts LA; Pierson AJ; Panaviene Z; Walker EL Plant Physiol; 2004 May; 135(1):112-20. PubMed ID: 15107503 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide analysis of the NAAT, DMAS, TOM, and ENA gene families in maize suggests their roles in mediating iron homeostasis. Zhang X; Xiao K; Li S; Li J; Huang J; Chen R; Pang S; Zhou X BMC Plant Biol; 2022 Jan; 22(1):37. PubMed ID: 35039017 [TBL] [Abstract][Full Text] [Related]
17. Root exudation of phytosiderophores from soil-grown wheat. Oburger E; Gruber B; Schindlegger Y; Schenkeveld WDC; Hann S; Kraemer SM; Wenzel WW; Puschenreiter M New Phytol; 2014 Sep; 203(4):1161-1174. PubMed ID: 24890330 [TBL] [Abstract][Full Text] [Related]
18. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)-phytosiderophore in Fe-deficient wheat plants. Aciksoz SB; Ozturk L; Gokmen OO; Römheld V; Cakmak I Physiol Plant; 2011 Jul; 142(3):287-96. PubMed ID: 21338370 [TBL] [Abstract][Full Text] [Related]
19. OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Aoyama T; Kobayashi T; Takahashi M; Nagasaka S; Usuda K; Kakei Y; Ishimaru Y; Nakanishi H; Mori S; Nishizawa NK Plant Mol Biol; 2009 Aug; 70(6):681-92. PubMed ID: 19468840 [TBL] [Abstract][Full Text] [Related]
20. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice. Bashir K; Nozoye T; Nagasaka S; Rasheed S; Miyauchi N; Seki M; Nakanishi H; Nishizawa NK J Exp Bot; 2017 Mar; 68(7):1785-1795. PubMed ID: 28369596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]