These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 956572)

  • 1. A comparison of the glutamate dehydrogenase catalyzed oxidation of NADPH by trinitrobenzenesulfonate with the uncatalyzed reaction.
    Brown A; Fisher HF
    J Am Chem Soc; 1976 Sep; 98(18):5682-8. PubMed ID: 956572
    [No Abstract]   [Full Text] [Related]  

  • 2. Penetration of 2,4,5-trinitrobenzenesulfonate into human erythrocytes. Consequences for studies on phospholipid asymmetry.
    Haest CW; Kamp D; Deuticke B
    Biochim Biophys Acta; 1981 Jan; 640(2):535-43. PubMed ID: 7213904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of 2,4,6-trinitrobenzenesulfonate on mercuric reductase, glutathione reductase and lipoamide dehydrogenase.
    Carlberg I; Sahlman L; Mannervik B
    FEBS Lett; 1985 Jan; 180(1):102-6. PubMed ID: 3917936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the energetics of the uncatalyzed and glutamate dehydrogenase catalyzed alpha-imino acid-alpha-amino acid interconversion.
    Srinivasan R; Fisher HF
    Biochemistry; 1985 Sep; 24(20):5356-60. PubMed ID: 4074700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of glutathione reductase by interaction of 2, 4, 6-trinitrobenzenesulfonate with the active-site dithiol.
    Carlberg I; Mannervik B
    FEBS Lett; 1979 Feb; 98(2):263-6. PubMed ID: 421899
    [No Abstract]   [Full Text] [Related]  

  • 6. Kinetic study of the reaction between trinitrobenzenesulfonic acid and amino acids with a trinitrobenzenesulfonate ion-selective electrode.
    Sarantonis EG; Diamandis EP; Karayannis MI
    Anal Biochem; 1986 May; 155(1):129-34. PubMed ID: 3717549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic study on rapid reaction of trinitrobenzenesulfonate with human serum albumin.
    Kurono Y; Ichioka K; Mori S; Ikeda K
    J Pharm Sci; 1981 Nov; 70(11):1297-8. PubMed ID: 7299685
    [No Abstract]   [Full Text] [Related]  

  • 8. Reaction mechanism of L-glutamate dehydrogenase. Transient complexes in the oxidative deamination of L-glutamate catalyzed by NAD(P)-dependent L-glutamate dehydrogenase.
    Di Franco A
    Eur J Biochem; 1974 Jun; 45(2):407-24. PubMed ID: 4153036
    [No Abstract]   [Full Text] [Related]  

  • 9. Enhancement of 14S and 30S dynein adenosine triphosphatase activities by modification of amino groups with trinitrobenzenesulfonate. A comparison with modification of SH groups.
    Shimizu T
    J Biochem; 1979 Jun; 85(6):1421-6. PubMed ID: 156723
    [No Abstract]   [Full Text] [Related]  

  • 10. Structural features facilitating the glutamate dehydrogenase catalyzed alpha-imino acid-alpha-amino acid interconversion.
    Srinivasan R; Fisher HF
    Arch Biochem Biophys; 1986 May; 246(2):743-50. PubMed ID: 3707132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidase activity of glutathione reductase effected by 2,4,5-trinitrobenzenesulfonate.
    Carlberg I; Mannervik B
    FEBS Lett; 1980 Jun; 115(2):265-8. PubMed ID: 7398886
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification and characterization of kinetically competent carbinolamine and alpha-iminoglutarate complexes in the glutamate dehydrogenase-catalyzed oxidation of L-glutamate using a multiwavelength transient state approach.
    Maniscalco SJ; Saha SK; Fisher HF
    Biochemistry; 1998 Oct; 37(41):14585-90. PubMed ID: 9772187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the rapid modification of human serum albumin with trinitrobenzenesulfonate and localization of its site.
    Kurono Y; Ichioka K; Ikeda K
    J Pharm Sci; 1983 Apr; 72(4):432-5. PubMed ID: 6864486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the sites of modification of bovine liver glutamate dehydrogenase reacted with trinitrobenzenesulfonate.
    Coffee CJ; Bradshaw RA; Goldin BR; Frieden C
    Biochemistry; 1971 Sep; 10(19):3516-26. PubMed ID: 4336413
    [No Abstract]   [Full Text] [Related]  

  • 15. Reversible reduction of an alpha-imino acid to an alpha-amino acid catalyzed by glutamate dehydrogenase: effect of ionizable functional groups.
    Srinivasan R; Fisher HF
    Biochemistry; 1985 Jan; 24(3):618-22. PubMed ID: 3994979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ammonia on the glutamate dehydrogenase catalyzed oxidative deamination of L-glutamate. The steady state.
    Brown A; Colen AH; Fisher HF
    Biochemistry; 1979 Dec; 18(26):5924-8. PubMed ID: 518877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of multiwavelength kinetic analysis approach to identify and characterize intermediate complexes in the reductive amination reaction catalyzed by bovine liver glutamate dehydrogenase.
    Saha SK; Maniscalco SJ; Fisher HF
    Biochim Biophys Acta; 1998 Jan; 1382(1):8-12. PubMed ID: 9507051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of phosphatidylserine in isolated chick epiphyseal cartilage matrix vesicles with trinitrobenzenesulfonate.
    Majeska RJ; Holwerda DL; Wuthier RE
    Calcif Tissue Int; 1979 Mar; 27(1):41-6. PubMed ID: 111786
    [No Abstract]   [Full Text] [Related]  

  • 19. Asymmetric labeling of amino lipids in liposomes.
    Lee HC; Forte JG
    Biochim Biophys Acta; 1979 Jul; 554(2):375-87. PubMed ID: 486448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.