These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9565935)

  • 1. Lactate influx into red blood cells from trained and untrained human subjects.
    Skelton MS; Kremer DE; Smith EW; Gladden LB
    Med Sci Sports Exerc; 1998 Apr; 30(4):536-42. PubMed ID: 9565935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate influx into red blood cells of athletic and nonathletic species.
    Skelton MS; Kremer DE; Smith EW; Gladden LB
    Am J Physiol; 1995 May; 268(5 Pt 2):R1121-8. PubMed ID: 7771571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of combined active recovery from supramaximal exercise on blood lactate disappearance in trained and untrained man.
    Gmada N; Bouhlel E; Mrizak I; Debabi H; Ben Jabrallah M; Tabka Z; Feki Y; Amri M
    Int J Sports Med; 2005 Dec; 26(10):874-9. PubMed ID: 16320173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does exercise-induced hypoxemia modify lactate influx into erythrocytes and hemorheological parameters in athletes?
    Connes P; Bouix D; Py G; Caillaud C; Kippelen P; Brun JF; Varray A; Prefaut C; Mercier J
    J Appl Physiol (1985); 2004 Sep; 97(3):1053-8. PubMed ID: 15121747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faster lactate transport across red blood cell membrane in sickle cell trait carriers.
    Sara F; Connes P; Hue O; Montout-Hedreville M; Etienne-Julan M; Hardy-Dessources MD
    J Appl Physiol (1985); 2006 Feb; 100(2):427-32. PubMed ID: 16239612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposite effects of in vitro lactate on erythrocyte deformability in athletes and untrained subjects.
    Connes P; Bouix D; Py G; Prefaut C; Mercier J; Brun JF; Caillaud C
    Clin Hemorheol Microcirc; 2004; 31(4):311-8. PubMed ID: 15567902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate-transport activity in RBCs of trained and untrained individuals from four racing species.
    Väihkönen LK; Heinonen OJ; Hyyppä S; Nieminen M; Pösö AR
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R19-24. PubMed ID: 11404274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactate distribution in the blood during progressive exercise.
    Smith EW; Skelton MS; Kremer DE; Pascoe DD; Gladden LB
    Med Sci Sports Exerc; 1997 May; 29(5):654-60. PubMed ID: 9140903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate of decline in blood lactate after cycling exercise in endurance-trained and -untrained subjects.
    Bassett DR; Merrill PW; Nagle FJ; Agre JC; Sampedro R
    J Appl Physiol (1985); 1991 Apr; 70(4):1816-20. PubMed ID: 2055859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What maintains energy supply at peak aerobic exercise in trained and untrained older men?
    Sagiv M; Goldhammer E; Ben-Sira D; Amir R
    Gerontology; 2007; 53(6):357-61. PubMed ID: 17622751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate transport studied in sarcolemmal giant vesicles from human muscle biopsies: relation to training status.
    Pilegaard H; Bangsbo J; Richter EA; Juel C
    J Appl Physiol (1985); 1994 Oct; 77(4):1858-62. PubMed ID: 7836210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endurance training alters basal erythrocyte MCT-1 contents and affects the lactate distribution between plasma and red blood cells in T2DM men following maximal exercise.
    Opitz D; Lenzen E; Opiolka A; Redmann M; Hellmich M; Bloch W; Brixius K; Brinkmann C
    Can J Physiol Pharmacol; 2015 Jun; 93(6):413-9. PubMed ID: 25844530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle.
    Pilegaard H; Domino K; Noland T; Juel C; Hellsten Y; Halestrap AP; Bangsbo J
    Am J Physiol; 1999 Feb; 276(2):E255-61. PubMed ID: 9950784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximal exercise and lactate do not change red blood cell aggregation in well trained athletes.
    Connes P; Caillaud C; Py G; Mercier J; Hue O; Brun JF
    Clin Hemorheol Microcirc; 2007; 36(4):319-26. PubMed ID: 17502702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red blood cell lactate transport in sickle disease and sickle cell trait.
    Pattillo RE; Gladden LB
    J Appl Physiol (1985); 2005 Sep; 99(3):822-7. PubMed ID: 15890755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injections of recombinant human erythropoietin increases lactate influx into erythrocytes.
    Connes P; Caillaud C; Mercier J; Bouix D; Casties JF
    J Appl Physiol (1985); 2004 Jul; 97(1):326-32. PubMed ID: 14966016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system.
    De Bruijne AW; Vreeburg H; Van Steveninck J
    Biochim Biophys Acta; 1983 Aug; 732(3):562-8. PubMed ID: 6871216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course of hemorheological alterations after heavy anaerobic exercise in untrained human subjects.
    Yalcin O; Erman A; Muratli S; Bor-Kucukatay M; Baskurt OK
    J Appl Physiol (1985); 2003 Mar; 94(3):997-1002. PubMed ID: 12391137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between V̇O2 and blood lactate responses after all-out running exercise.
    de Aguiar RA; Cruz RS; Turnes T; Pereira KL; Caputo F
    Appl Physiol Nutr Metab; 2015 Mar; 40(3):263-8. PubMed ID: 25693899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate distribution in the blood during steady-state exercise.
    Smith EW; Skelton MS; Kremer DE; Pascoe DD; Gladden LB
    Med Sci Sports Exerc; 1998 Sep; 30(9):1424-9. PubMed ID: 9741612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.