BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 9566191)

  • 1. Metal ion dependency of microfibrils supports a rod-like conformation for fibrillin-1 calcium-binding epidermal growth factor-like domains.
    Cardy CM; Handford PA
    J Mol Biol; 1998 Mar; 276(5):855-60. PubMed ID: 9566191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1.
    Yuan X; Werner JM; Lack J; Knott V; Handford PA; Campbell ID; Downing AK
    J Mol Biol; 2002 Feb; 316(1):113-25. PubMed ID: 11829507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EGF-like domain calcium affinity modulated by N-terminal domain linkage in human fibrillin-1.
    Smallridge RS; Whiteman P; Doering K; Handford PA; Downing AK
    J Mol Biol; 1999 Feb; 286(3):661-8. PubMed ID: 10024441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defective calcium binding to fibrillin-1: consequence of an N2144S change for fibrillin-1 structure and function.
    Kettle S; Yuan X; Grundy G; Knott V; Downing AK; Handford PA
    J Mol Biol; 1999 Jan; 285(3):1277-87. PubMed ID: 9887276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure and dynamics of a calcium binding epidermal growth factor-like domain pair from the neonatal region of human fibrillin-1.
    Smallridge RS; Whiteman P; Werner JM; Campbell ID; Handford PA; Downing AK
    J Biol Chem; 2003 Apr; 278(14):12199-206. PubMed ID: 12511552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular effects of calcium binding mutations in Marfan syndrome depend on domain context.
    McGettrick AJ; Knott V; Willis A; Handford PA
    Hum Mol Genet; 2000 Aug; 9(13):1987-94. PubMed ID: 10942427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Backbone dynamics of a cbEGF domain pair in the presence of calcium.
    Werner JM; Knott V; Handford PA; Campbell ID; Downing AK
    J Mol Biol; 2000 Mar; 296(4):1065-78. PubMed ID: 10686104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of calcium in the organization of fibrillin microfibrils.
    Kielty CM; Shuttleworth CA
    FEBS Lett; 1993 Dec; 336(2):323-6. PubMed ID: 8262254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrillin-1, a calcium binding protein of extracellular matrix.
    Handford PA
    Biochim Biophys Acta; 2000 Dec; 1498(2-3):84-90. PubMed ID: 11108952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calcium binding properties and molecular organization of epidermal growth factor-like domains in human fibrillin-1.
    Handford P; Downing AK; Rao Z; Hewett DR; Sykes BC; Kielty CM
    J Biol Chem; 1995 Mar; 270(12):6751-6. PubMed ID: 7896820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR analysis of cbEGF domains gives new insights into the structural consequences of a P1148A substitution in fibrillin-1.
    Whiteman P; Downing AK; Handford PA
    Protein Eng; 1998 Nov; 11(11):957-9. PubMed ID: 9876915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrillin microfibrils: a key role for the interbead region in elasticity.
    Wang MC; Lu Y; Baldock C
    J Mol Biol; 2009 Apr; 388(1):168-79. PubMed ID: 19268673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A G1127S change in calcium-binding epidermal growth factor-like domain 13 of human fibrillin-1 causes short range conformational effects.
    Whiteman P; Smallridge RS; Knott V; Cordle JJ; Downing AK; Handford PA
    J Biol Chem; 2001 May; 276(20):17156-62. PubMed ID: 11278305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Gly --> Ser change causes defective folding in vitro of calcium-binding epidermal growth factor-like domains from factor IX and fibrillin-1.
    Whiteman P; Downing AK; Smallridge R; Winship PR; Handford PA
    J Biol Chem; 1998 Apr; 273(14):7807-13. PubMed ID: 9525872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-dependent interface formation in fibrillin-1.
    Jensen SA; Corbett AR; Knott V; Redfield C; Handford PA
    J Biol Chem; 2005 Apr; 280(14):14076-84. PubMed ID: 15649891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural consequences of cysteine substitutions C1977Y and C1977R in calcium-binding epidermal growth factor-like domain 30 of human fibrillin-1.
    Suk JY; Jensen S; McGettrick A; Willis AC; Whiteman P; Redfield C; Handford PA
    J Biol Chem; 2004 Dec; 279(49):51258-65. PubMed ID: 15371449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization.
    Lee SS; Knott V; Jovanović J; Harlos K; Grimes JM; Choulier L; Mardon HJ; Stuart DI; Handford PA
    Structure; 2004 Apr; 12(4):717-29. PubMed ID: 15062093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular effects of homocysteine on cbEGF domain structure: insights into the pathogenesis of homocystinuria.
    Hutchinson S; Aplin RT; Webb H; Kettle S; Timmermans J; Boers GH; Handford PA
    J Mol Biol; 2005 Feb; 346(3):833-44. PubMed ID: 15713466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular and molecular studies of Marfan syndrome mutations identify co-operative protein folding in the cbEGF12-13 region of fibrillin-1.
    Whiteman P; Willis AC; Warner A; Brown J; Redfield C; Handford PA
    Hum Mol Genet; 2007 Apr; 16(8):907-18. PubMed ID: 17324963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.
    Zeyer KA; Reinhardt DP
    Mutat Res Rev Mutat Res; 2015; 765():7-18. PubMed ID: 26281765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.