These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9566327)

  • 21. Pitch strength decreases as F0 and harmonic resolution increase in complex tones composed exclusively of high harmonics.
    Ives DT; Patterson RD
    J Acoust Soc Am; 2008 May; 123(5):2670-9. PubMed ID: 18529186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Further examination of pitch discrimination interference between complex tones containing resolved harmonics.
    Gockel HE; Carlyon RP; Plack CJ
    J Acoust Soc Am; 2009 Feb; 125(2):1059-66. PubMed ID: 19206880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auditory Brainstem Representation of the Voice Pitch Contours in the Resolved and Unresolved Components of Mandarin Tones.
    Peng F; McKay CM; Mao D; Hou W; Innes-Brown H
    Front Neurosci; 2018; 12():820. PubMed ID: 30505262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dominant region for the pitch of complex tones with low fundamental frequencies.
    Jackson HM; Moore BC
    J Acoust Soc Am; 2013 Aug; 134(2):1193-204. PubMed ID: 23927118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Context dependence of fundamental-frequency discrimination: lateralized temporal fringes.
    Gockel H; Carlyon RP; Micheyl C
    J Acoust Soc Am; 1999 Dec; 106(6):3553-63. PubMed ID: 10615695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discrimination of the fundamental frequency of complex tones with fixed and shifting spectral envelopes by normally hearing and hearing-impaired subjects.
    Moore BC; Moore GA
    Hear Res; 2003 Aug; 182(1-2):153-63. PubMed ID: 12948610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity.
    Moore BC; Peters RW
    J Acoust Soc Am; 1992 May; 91(5):2881-93. PubMed ID: 1629481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The relationship between frequency selectivity and pitch discrimination: effects of stimulus level.
    Bernstein JG; Oxenham AJ
    J Acoust Soc Am; 2006 Dec; 120(6):3916-28. PubMed ID: 17225419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of spectral locus and F0 changes on the pitch and timbre of complex tones.
    Singh PG; Hirsh IJ
    J Acoust Soc Am; 1992 Nov; 92(5):2650-61. PubMed ID: 1479128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brainstem auditory responses to resolved and unresolved harmonics of a synthetic vowel in quiet and noise.
    Laroche M; Dajani HR; Prévost F; Marcoux AM
    Ear Hear; 2013; 34(1):63-74. PubMed ID: 22814487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Masker asynchrony impairs the fundamental-frequency discrimination of unresolved harmonics.
    Carlyon RP
    J Acoust Soc Am; 1996 Jan; 99(1):525-33. PubMed ID: 8568040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of temporal fringes on fundamental-frequency discrimination.
    Micheyl C; Carlyon RP
    J Acoust Soc Am; 1998 Nov; 104(5):3006-18. PubMed ID: 9821345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dominance region for pitch: effects of duration and dichotic presentation.
    Gockel H; Carlyon RP; Plack CJ
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1326-36. PubMed ID: 15807021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for two pitch encoding mechanisms using a selective auditory training paradigm.
    Grimault N; Micheyl C; Carlyon RP; Collet L
    Percept Psychophys; 2002 Feb; 64(2):189-97. PubMed ID: 12013374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the temporal mechanism involved in the pitch of unresolved harmonics.
    Kaernbach C; Bering C
    J Acoust Soc Am; 2001 Aug; 110(2):1039-48. PubMed ID: 11519572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perception of the pitch of unresolved harmonics by 3- and 7-month-old human infants.
    Lau BK; Werner LA
    J Acoust Soc Am; 2014 Aug; 136(2):760-7. PubMed ID: 25096110
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perceptual learning of fundamental frequency discrimination: effects of fundamental frequency, harmonic number, and component phase.
    Miyazono H; Glasberg BR; Moore BC
    J Acoust Soc Am; 2010 Dec; 128(6):3649-57. PubMed ID: 21218897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perceived continuity and pitch shifts for complex tones with unresolved harmonics.
    Plack CJ; Watkinson RK
    J Acoust Soc Am; 2010 Oct; 128(4):1922-9. PubMed ID: 20968364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discrimination of complex tones with unresolved components using temporal fine structure information.
    Moore BC; Hopkins K; Cuthbertson S
    J Acoust Soc Am; 2009 May; 125(5):3214-22. PubMed ID: 19425664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectro-temporal templates unify the pitch percepts of resolved and unresolved harmonics.
    Shamma S; Dutta K
    J Acoust Soc Am; 2019 Feb; 145(2):615. PubMed ID: 30823787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.