These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9566344)

  • 1. Tuning fork shear-force feedback.
    Ruiter AG; van der Werf KO; Veerman JA; Garcia-Parajo MF; Rensen WH; van Hulst NF
    Ultramicroscopy; 1998 Mar; 71(1-4):149-57. PubMed ID: 9566344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration amplitude of a tip-loaded quartz tuning fork during shear force microscopy scanning.
    Sandoz P; Friedt JM; Carry E
    Rev Sci Instrum; 2008 Aug; 79(8):086102. PubMed ID: 19044383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular recognition imaging using tuning fork-based transverse dynamic force microscopy.
    Hofer M; Adamsmaier S; van Zanten TS; Chtcheglova LA; Manzo C; Duman M; Mayer B; Ebner A; Moertelmaier M; Kada G; Garcia-Parajo MF; Hinterdorfer P; Kienberger F
    Ultramicroscopy; 2010 May; 110(6):605-11. PubMed ID: 20226591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-field optical and shear-force microscopy of single fluorophores and DNA molecules.
    Garcia-Parajo MF; Veerman JA; Ruiter AG; van Hulst NF
    Ultramicroscopy; 1998 Mar; 71(1-4):311-9. PubMed ID: 9566346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic behavior of tuning fork shear-force structures in a SNOM system.
    Gao F; Li X; Wang J; Fu Y
    Ultramicroscopy; 2014 Jul; 142():10-23. PubMed ID: 24815548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezoelectrical shear-force distance control in near-field optical microscopy for biological applications.
    Hollricher O; Brunner R; Marti O
    Ultramicroscopy; 1998 Mar; 71(1-4):143-7. PubMed ID: 9566343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of a short-tip tapping-mode tuning fork near-field scanning optical microscope.
    Lu NH; Huang CW; Chen CY; Yu CF; Kao TS; Fu YH; Tsai DP
    J Microsc; 2003 Mar; 209(Pt 3):205-8. PubMed ID: 12641763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity maximized near-field scanning optical microscope with dithering sample stage.
    Park KD; Lee SG; Heo C; Lee YH; Jeong MS
    Rev Sci Instrum; 2012 Sep; 83(9):093710. PubMed ID: 23020386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-field fluorescence imaging of genetic material: toward the molecular limit.
    van Hulst NF; Garcia-Parajo MF; Moers MH; Veerman JA; Ruiter AG
    J Struct Biol; 1997 Jul; 119(2):222-31. PubMed ID: 9245762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanically stable tuning fork sensor with high quality factor for the atomic force microscope.
    Kim K; Park JY; Kim KB; Lee N; Seo Y
    Scanning; 2014; 36(6):632-9. PubMed ID: 25229367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfected single-cell imaging by scanning electrochemical optical microscopy with shear force feedback regulation.
    Takahashi Y; Shiku H; Murata T; Yasukawa T; Matsue T
    Anal Chem; 2009 Dec; 81(23):9674-81. PubMed ID: 19883061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of enzyme activity by scanning electrochemical microscope equipped with a feedback control for substrate-probe distance.
    Oyamatsu D; Hirano Y; Kanaya N; Mase Y; Nishizawa M; Matsue T
    Bioelectrochemistry; 2003 Aug; 60(1-2):115-21. PubMed ID: 12893317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks.
    Park KD; Park DJ; Lee SG; Choi G; Kim DS; Byeon CC; Choi SB; Jeong MS
    Nanotechnology; 2014 Feb; 25(7):075704. PubMed ID: 24457601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.
    Smirnov A; Yasinskii VM; Filimonenko DS; Rostova E; Dietler G; Sekatskii SK
    Scanning; 2018; 2018():3249189. PubMed ID: 29849857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning near-field optical microscopy of a cell membrane in liquid.
    Höppener C; Molenda D; Fuchs H; Naber A
    J Microsc; 2003 Jun; 210(Pt 3):288-93. PubMed ID: 12787101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separating different contributions to the shear force in near-field microscopy.
    Leuschner M; Schüttler M; Giessen H
    J Microsc; 2001 Apr; 202(Pt 1):176-81. PubMed ID: 11298889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined scanning electrochemical/optical microscopy with shear force and current feedback.
    Lee Y; Ding Z; Bard AJ
    Anal Chem; 2002 Aug; 74(15):3634-43. PubMed ID: 12175147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopy of the shear force interaction in scanning near-field optical microscopy.
    Hoppe S; Ctistis G; Paggel JJ; Fumagalli P
    Ultramicroscopy; 2005 Feb; 102(3):221-6. PubMed ID: 15639353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography and near-field image measurement of soft biological samples in liquid by using a tuning fork based bent optical-fiber sensor.
    Kwon S; Jeong S; Kang Y
    Rev Sci Instrum; 2011 Apr; 82(4):043707. PubMed ID: 21529013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tuning fork as sensor for dynamic force distance control in scanning near-field optical microscopy.
    Naber A
    J Microsc; 1999; 194(Pt 2-3):307-10. PubMed ID: 11388256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.