BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9566503)

  • 1. A kinetic model on calcium residues and facilitation.
    Lundh D
    Brain Res Bull; 1998 Apr; 45(6):589-97. PubMed ID: 9566503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation by synapsin I and Ca(2+)-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse.
    Llinás R; Gruner JA; Sugimori M; McGuinness TL; Greengard P
    J Physiol; 1991 May; 436():257-82. PubMed ID: 1676419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated regulation of synapsin I interaction with F-actin by Ca2+/calmodulin and phosphorylation: inhibition of actin binding and bundling.
    Goold R; Chan KM; Baines AJ
    Biochemistry; 1995 Feb; 34(6):1912-20. PubMed ID: 7849051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of the phosphorylation-dependent interactions of synapsin I with rat brain synaptic vesicles.
    Stefani G; Onofri F; Valtorta F; Vaccaro P; Greengard P; Benfenati F
    J Physiol; 1997 Nov; 504 ( Pt 3)(Pt 3):501-15. PubMed ID: 9401959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synapsin dispersion and reclustering during synaptic activity.
    Chi P; Greengard P; Ryan TA
    Nat Neurosci; 2001 Dec; 4(12):1187-93. PubMed ID: 11685225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific phosphorylation of synapsin I by Ca2+/calmodulin-dependent protein kinase II in pancreatic betaTC3 cells: synapsin I is not associated with insulin secretory granules.
    Krueger KA; Ings EI; Brun AM; Landt M; Easom RA
    Diabetes; 1999 Mar; 48(3):499-506. PubMed ID: 10078549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of proteins in neuron terminals: specificity depends on coincidental signaling.
    Zhang L; Tinette S; Robichon A
    J Cell Biochem; 2003 Feb; 88(3):589-98. PubMed ID: 12532334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noradrenaline synthesis after sympathetic nerve activation in rat atria and its dependence on calcium but not CAM kinase II and protein kinases A or C.
    Kotsonis P; Binko J; Majewski H
    Br J Pharmacol; 1996 Dec; 119(8):1605-13. PubMed ID: 8982508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphetamine increases the phosphorylation of neuromodulin and synapsin I in rat striatal synaptosomes.
    Iwata S; Hewlett GH; Gnegy ME
    Synapse; 1997 Jul; 26(3):281-91. PubMed ID: 9183817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of phosphosynapsin I-specific antibodies for image analysis of signal transduction in single nerve terminals.
    Menegon A; Dunlap DD; Castano F; Benfenati F; Czernik AJ; Greengard P; Valtorta F
    J Cell Sci; 2000 Oct; 113 ( Pt 20)():3573-82. PubMed ID: 11017873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the distribution of calcium calmodulin-dependent protein kinase II at the presynaptic bouton after depolarization.
    Tao-Cheng JH; Dosemeci A; Winters CA; Reese TS
    Brain Cell Biol; 2006 Jun; 35(2-3):117-24. PubMed ID: 17957478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation.
    Nayak AS; Moore CI; Browning MD
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15451-6. PubMed ID: 8986832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activators of protein kinase C increase the phosphorylation of the synapsins at sites phosphorylated by cAMP-dependent and Ca2+/calmodulin-dependent protein kinase in the rat hippocampal slice.
    Browning MD; Dudek EM
    Synapse; 1992 Jan; 10(1):62-70. PubMed ID: 1311130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of synapsin domain A is required for post-tetanic potentiation.
    Fiumara F; Milanese C; Corradi A; Giovedì S; Leitinger G; Menegon A; Montarolo PG; Benfenati F; Ghirardi M
    J Cell Sci; 2007 Sep; 120(Pt 18):3228-37. PubMed ID: 17726061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine.
    Iwata SI; Hewlett GH; Ferrell ST; Kantor L; Gnegy ME
    J Pharmacol Exp Ther; 1997 Dec; 283(3):1445-52. PubMed ID: 9400020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions.
    Jovanovic JN; Benfenati F; Siow YL; Sihra TS; Sanghera JS; Pelech SL; Greengard P; Czernik AJ
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3679-83. PubMed ID: 8622996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-dependent interaction with calmodulin is conserved in the synapsin family: identification of a high-affinity site.
    Nicol S; Rahman D; Baines AJ
    Biochemistry; 1997 Sep; 36(38):11487-95. PubMed ID: 9298969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within domains mediating synapsin I interactions.
    Cole RN; Hart GW
    J Neurochem; 1999 Jul; 73(1):418-28. PubMed ID: 10386995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression profiling of rat brain neurons reveals angiotensin II-induced regulation of calmodulin and synapsin I: possible role in neuromodulation.
    Gallinat S; Busche S; Yang H; Raizada MK; Sumners C
    Endocrinology; 2001 Mar; 142(3):1009-16. PubMed ID: 11181513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second messengers involved in the two processes of presynaptic facilitation that contribute to sensitization and dishabituation in Aplysia sensory neurons.
    Braha O; Dale N; Hochner B; Klein M; Abrams TW; Kandel ER
    Proc Natl Acad Sci U S A; 1990 Mar; 87(5):2040-4. PubMed ID: 2155432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.