BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 956697)

  • 1. The in vitro effect of primaquine on red cell phospholipid metabolism.
    Miller A; Smith HC
    J Lab Clin Med; 1976 Sep; 88(3):462-8. PubMed ID: 956697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of phospholipid metabolism in human red cells by primaquine. A possible mechanism in drug-induced hemolysis.
    Wittels B
    Biochim Biophys Acta; 1970 Jun; 210(1):74-85. PubMed ID: 5456047
    [No Abstract]   [Full Text] [Related]  

  • 3. The differential susceptibility of A427 and A549 cell lines to the growth-inhibitory effects of ET-18-OCH3 does not correlate with the relative effects of the alkyl-lysophospholipid on the incorporation of fatty acids into cellular phospholipids.
    Lu X; Arthur G
    Cancer Res; 1992 May; 52(10):2813-7. PubMed ID: 1581895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lysophosphatidylcholine on salt permeability through the erythrocyte membrane under haemolytic conditions.
    Eskelinen S
    Gen Physiol Biophys; 1986 Dec; 5(6):637-47. PubMed ID: 3557104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation permeability and mechanical properties of the erythrocyte membrane under the influence of lysophosphatidylcholine (LPC) in isotonic and hypotonic media.
    Eskelinen S; Mela M
    Acta Physiol Scand; 1984 Dec; 122(4):527-34. PubMed ID: 6524395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Contribution of the spleen to the lipid metabolism in plasma and red cells. On hereditary spherocytosis and hereditary high red cell membrane phosphatidylcholine hemolytic anemia].
    Sugihara T; Otsuka A; Yawata Y
    Rinsho Ketsueki; 1989 Aug; 30(8):1248-55. PubMed ID: 2601042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of cottonseed microsomal N-acylphosphatidylethanolamine.
    Chapman KD; Lin I; DeSouza AD
    Arch Biochem Biophys; 1995 Apr; 318(2):401-7. PubMed ID: 7733669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different mechanisms of lysophosphatidylcholine-induced Ca(2+) mobilization in N2a mouse and SH-SY5Y human neuroblastoma cells.
    Li XH; Long DX; Li W; Wu YJ
    Neurosci Lett; 2007 Aug; 424(1):22-6. PubMed ID: 17703881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primaquine-induced hemolytic anemia: susceptibility of normal versus glutathione-depleted rat erythrocytes to 5-hydroxyprimaquine.
    Bowman ZS; Oatis JE; Whelan JL; Jollow DJ; McMillan DC
    J Pharmacol Exp Ther; 2004 Apr; 309(1):79-85. PubMed ID: 14724225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primaquine-induced hemolytic anemia: role of splenic macrophages in the fate of 5-hydroxyprimaquine-treated rat erythrocytes.
    Bowman ZS; Jollow DJ; McMillan DC
    J Pharmacol Exp Ther; 2005 Dec; 315(3):980-6. PubMed ID: 16099929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salicylamide sulfate cell entry in perfused rat liver: a multiple-indicator dilution study.
    Xu X; Schwab AJ; Barker F; Goresky CA; Pang KS
    Hepatology; 1994 Jan; 19(1):229-44. PubMed ID: 8276359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoalbuminemia causes high blood viscosity by increasing red cell lysophosphatidylcholine.
    Joles JA; Willekes-Koolschijn N; Koomans HA
    Kidney Int; 1997 Sep; 52(3):761-70. PubMed ID: 9291198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anemia with spur cells: a red cell defect acquired in serum and modified in the circulation.
    Cooper RA
    J Clin Invest; 1969 Oct; 48(10):1820-31. PubMed ID: 5822588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human crystalline lens phospholipid analysis with age.
    Merchant TE; Lass JH; Meneses P; Greiner JV; Glonek T
    Invest Ophthalmol Vis Sci; 1991 Mar; 32(3):549-55. PubMed ID: 2001928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acyl chain-dependent effect of lysophosphatidylcholine on human neutrophils.
    Ojala PJ; Hirvonen TE; Hermansson M; Somerharju P; Parkkinen J
    J Leukoc Biol; 2007 Dec; 82(6):1501-9. PubMed ID: 17884992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The selective and conjoint loss of red cell lipids.
    Cooper RA; Jandl JH
    J Clin Invest; 1969 May; 48(5):906-14. PubMed ID: 5780200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid metabolism in intact and modified erythrocyte membranes.
    Redman CM
    J Cell Biol; 1971 Apr; 49(1):35-49. PubMed ID: 4324566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a tumor promoter on phospholipid metabolism in HeLa cells.
    Guy GR; Murray AW
    Cancer Res; 1983 Nov; 43(11):5564-9. PubMed ID: 6616483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipid metabolism in boar spermatozoa and role of diacylglycerol species in the de novo formation of phosphatidylcholine.
    Vazquez JM; Roldan ER
    Mol Reprod Dev; 1997 May; 47(1):105-12. PubMed ID: 9110321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of an osmotic pressure gradient and lysophosphatidylcholine on the transient and constant potassium permeability properties of the erythrocyte membrane.
    Eskelinen S; Bernhardt I
    Biomed Biochim Acta; 1984; 43(7):947-53. PubMed ID: 6517890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.