These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9567196)

  • 1. A satellite DNA element specific for roe deer (Capreolus capreolus).
    Buntjer JB; Nijman IJ; Zijlstra C; Lenstra JA
    Chromosoma; 1998 Mar; 107(1):1-5. PubMed ID: 9567196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal distribution and organization of three cervid satellite DNAs in Chinese water deer (Hydropotes inermis).
    Lin CC; Li YC
    Cytogenet Genome Res; 2006; 114(2):147-54. PubMed ID: 16825767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tandemly repetitive, centromeric DNA sequence from the Canadian woodland caribou (Rangifer tarandus caribou): its conservation and evolution in several deer species.
    Lee C; Ritchie DB; Lin CC
    Chromosome Res; 1994 Jul; 2(4):293-306. PubMed ID: 7921645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of a tandem repetitive sequence cloned from the deer Capreolus capreolus and its chromosomal localisation in two muntjac species.
    Scherthan H
    Hereditas; 1991; 115(1):43-9. PubMed ID: 1774183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus).
    Trifonov VA; Dementyeva PV; Larkin DM; O'Brien PC; Perelman PL; Yang F; Ferguson-Smith MA; Graphodatsky AS
    BMC Biol; 2013 Aug; 11():90. PubMed ID: 23915065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families.
    Li YC; Lee C; Hseu TH; Li SY; Lin CC
    Cytogenet Cell Genet; 2000; 89(3-4):192-8. PubMed ID: 10965121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome-specific alpha-satellite DNA from the centromere of chimpanzee chromosome 4.
    Haaf T; Willard HF
    Chromosoma; 1997 Sep; 106(4):226-32. PubMed ID: 9254724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repetitive sequence families in Alces alces americana.
    Blake RD; Wang JZ; Beauregard L
    J Mol Evol; 1997 May; 44(5):509-20. PubMed ID: 9115175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher-order organization of subrepeats and the evolution of cervid satellite I DNA.
    Lee C; Court DR; Cho C; Haslett JL; Lin CC
    J Mol Evol; 1997 Mar; 44(3):327-35. PubMed ID: 9060399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing.
    Makunin AI; Kichigin IG; Larkin DM; O'Brien PC; Ferguson-Smith MA; Yang F; Proskuryakova AA; Vorobieva NV; Chernyaeva EN; O'Brien SJ; Graphodatsky AS; Trifonov VA
    BMC Genomics; 2016 Aug; 17(1):618. PubMed ID: 27516089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences.
    Saito Y; Edpalina RR; Abe S
    Genetica; 2007 Oct; 131(2):157-66. PubMed ID: 17180439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human gamma X satellite DNA: an X chromosome specific centromeric DNA sequence.
    Lee C; Li X; Jabs EW; Court D; Lin CC
    Chromosoma; 1995 Nov; 104(2):103-12. PubMed ID: 8585987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris).
    Menzel G; Dechyeva D; Wenke T; Holtgräwe D; Weisshaar B; Schmidt T
    Ann Bot; 2008 Oct; 102(4):521-30. PubMed ID: 18682437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and characterization of novel centromeric repetitive DNA sequences in the blue-breasted quail (Coturnix chinensis, Galliformes).
    Yamada K; Shibusawa M; Tsudzuki M; Matsuda Y
    Cytogenet Genome Res; 2002; 98(4):255-61. PubMed ID: 12826749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conservation of a 31-bp bovine subrepeat in centromeric satellite DNA monomers of Cervus elaphus and other cervid species.
    Lee C; Lin CC
    Chromosome Res; 1996 Sep; 4(6):427-35. PubMed ID: 8889241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of the putative cervidae ancestral karyotype by chromosome painting of Siberian roe deer (Capreolus pygargus) with dromedary probes.
    Dementyeva PV; Trifonov VA; Kulemzina AI; Graphodatsky AS
    Cytogenet Genome Res; 2010 Jun; 128(4):228-35. PubMed ID: 20413959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A family of centromeric satellite DNAs from the European brown frog Rana graeca italica.
    Cardone DE; Feliciello I; Marotta M; Rosati C; Chinali G
    Genome; 1997 Oct; 40(5):774-81. PubMed ID: 9352650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7.
    Wevrick R; Willard VP; Willard HF
    Genomics; 1992 Dec; 14(4):912-23. PubMed ID: 1478672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of cloned, repetitive DNA sequences in deer species and its implications for maintenance of gene territory.
    Scherthan H; Arnason U; Lima-de-Faria A
    Hereditas; 1990; 112(1):13-20. PubMed ID: 2361878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and chromosomal distribution of satellite DNA sequences of the water buffalo (Bubalus bubalis).
    Tanaka K; Matsuda Y; Masangkay JS; Solis CD; Anunciado RV; Namikawa T
    J Hered; 1999; 90(3):418-22. PubMed ID: 10355126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.