These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 9568720)
1. NMR structure of the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Legault P; Li J; Mogridge J; Kay LE; Greenblatt J Cell; 1998 Apr; 93(2):289-99. PubMed ID: 9568720 [TBL] [Abstract][Full Text] [Related]
2. Antitermination in bacteriophage lambda. The structure of the N36 peptide-boxB RNA complex. Schärpf M; Sticht H; Schweimer K; Boehm M; Hoffmann S; Rösch P Eur J Biochem; 2000 Apr; 267(8):2397-408. PubMed ID: 10759866 [TBL] [Abstract][Full Text] [Related]
3. Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda. Chattopadhyay S; Garcia-Mena J; DeVito J; Wolska K; Das A Proc Natl Acad Sci U S A; 1995 Apr; 92(9):4061-5. PubMed ID: 7732031 [TBL] [Abstract][Full Text] [Related]
4. Independent ligand-induced folding of the RNA-binding domain and two functionally distinct antitermination regions in the phage lambda N protein. Mogridge J; Legault P; Li J; Van Oene MD; Kay LE; Greenblatt J Mol Cell; 1998 Jan; 1(2):265-75. PubMed ID: 9659923 [TBL] [Abstract][Full Text] [Related]
5. Structural mimicry in the phage phi21 N peptide-boxB RNA complex. Cilley CD; Williamson JR RNA; 2003 Jun; 9(6):663-76. PubMed ID: 12756325 [TBL] [Abstract][Full Text] [Related]
6. RNA recognition by a bent alpha-helix regulates transcriptional antitermination in phage lambda. Su L; Radek JT; Hallenga K; Hermanto P; Chan G; Labeots LA; Weiss MA Biochemistry; 1997 Oct; 36(42):12722-32. PubMed ID: 9335528 [TBL] [Abstract][Full Text] [Related]
7. Assembly of the N-dependent antitermination complex of phage lambda: NusA and RNA bind independently to different unfolded domains of the N protein. Van Gilst MR; von Hippel PH J Mol Biol; 1997 Nov; 274(2):160-73. PubMed ID: 9398524 [TBL] [Abstract][Full Text] [Related]
8. Action of an RNA site at a distance: role of the nut genetic signal in transcription antitermination by phage-lambda N gene product. Whalen WA; Das A New Biol; 1990 Nov; 2(11):975-91. PubMed ID: 2151659 [TBL] [Abstract][Full Text] [Related]
9. Differential modes of recognition in N peptide-boxB complexes. Austin RJ; Xia T; Ren J; Takahashi TT; Roberts RW Biochemistry; 2003 Dec; 42(50):14957-67. PubMed ID: 14674772 [TBL] [Abstract][Full Text] [Related]
10. The structure of the coliphage HK022 Nun protein-lambda-phage boxB RNA complex. Implications for the mechanism of transcription termination. Faber C; Schärpf M; Becker T; Sticht H; Rösch P J Biol Chem; 2001 Aug; 276(34):32064-70. PubMed ID: 11356847 [TBL] [Abstract][Full Text] [Related]
11. Achieving specificity in selected and wild-type N peptide-RNA complexes: the importance of discrimination against noncognate RNA targets. Barrick JE; Roberts RW Biochemistry; 2003 Nov; 42(44):12998-3007. PubMed ID: 14596615 [TBL] [Abstract][Full Text] [Related]
12. Escherichia coli NusA is required for efficient RNA binding by phage HK022 nun protein. Watnick RS; Gottesman ME Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1546-51. PubMed ID: 9465052 [TBL] [Abstract][Full Text] [Related]
13. Interactions of an Arg-rich region of transcription elongation protein NusA with NUT RNA: implications for the order of assembly of the lambda N antitermination complex in vivo. Zhou Y; Mah TF; Yu YT; Mogridge J; Olson ER; Greenblatt J; Friedman DI J Mol Biol; 2001 Jun; 310(1):33-49. PubMed ID: 11419935 [TBL] [Abstract][Full Text] [Related]
14. The N-terminus is unstructured, but not dynamically disordered, in the complex between HK022 Nun protein and lambda-phage BoxB RNA hairpin. Stuart AC; Gottesman ME; Palmer AG FEBS Lett; 2003 Oct; 553(1-2):95-8. PubMed ID: 14550553 [TBL] [Abstract][Full Text] [Related]
15. HK022 Nun Requires Arginine-Rich Motif Residues Distinct from λ N. Tawk CS; Ghattas IR; Smith CA J Bacteriol; 2015 Nov; 197(22):3573-82. PubMed ID: 26350130 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the spacial requirements for RNA-protein interactions within the N antitermination complex of bacteriophage lambda. Horiya S; Inaba M; Koh CS; Uehara H; Masui N; Ishibashi M; Matsufuji S; Harada K Nucleic Acids Symp Ser (Oxf); 2009; (53):91-2. PubMed ID: 19749275 [TBL] [Abstract][Full Text] [Related]
17. A quantitative description of the binding states and in vitro function of antitermination protein N of bacteriophage lambda. Conant CR; Van Gilst MR; Weitzel SE; Rees WA; von Hippel PH J Mol Biol; 2005 May; 348(5):1039-57. PubMed ID: 15854643 [TBL] [Abstract][Full Text] [Related]
18. Bacteriophage lambda N protein alone can induce transcription antitermination in vitro. Rees WA; Weitzel SE; Yager TD; Das A; von Hippel PH Proc Natl Acad Sci U S A; 1996 Jan; 93(1):342-6. PubMed ID: 8552635 [TBL] [Abstract][Full Text] [Related]
19. The RNA-protein complex: direct probing of the interfacial recognition dynamics and its correlation with biological functions. Xia T; Becker HC; Wan C; Frankel A; Roberts RW; Zewail AH Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8119-23. PubMed ID: 12815093 [TBL] [Abstract][Full Text] [Related]
20. The antitermination activity of bacteriophage lambda N protein is controlled by the kinetics of an RNA-looping-facilitated interaction with the transcription complex. Conant CR; Goodarzi JP; Weitzel SE; von Hippel PH J Mol Biol; 2008 Dec; 384(1):87-108. PubMed ID: 18922547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]