These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
683 related articles for article (PubMed ID: 9568900)
1. Flexible ligand docking using conformational ensembles. Lorber DM; Shoichet BK Protein Sci; 1998 Apr; 7(4):938-50. PubMed ID: 9568900 [TBL] [Abstract][Full Text] [Related]
2. FlexE: efficient molecular docking considering protein structure variations. Claussen H; Buning C; Rarey M; Lengauer T J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774 [TBL] [Abstract][Full Text] [Related]
3. Testing a flexible-receptor docking algorithm in a model binding site. Wei BQ; Weaver LH; Ferrari AM; Matthews BW; Shoichet BK J Mol Biol; 2004 Apr; 337(5):1161-82. PubMed ID: 15046985 [TBL] [Abstract][Full Text] [Related]
4. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Huang SY; Zou X Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427 [TBL] [Abstract][Full Text] [Related]
5. A method for biomolecular structural recognition and docking allowing conformational flexibility. Sandak B; Nussinov R; Wolfson HJ J Comput Biol; 1998; 5(4):631-54. PubMed ID: 10072081 [TBL] [Abstract][Full Text] [Related]
6. Protein-protein docking with multiple residue conformations and residue substitutions. Lorber DM; Udo MK; Shoichet BK Protein Sci; 2002 Jun; 11(6):1393-408. PubMed ID: 12021438 [TBL] [Abstract][Full Text] [Related]
7. Protein flexibility in ligand docking and virtual screening to protein kinases. Cavasotto CN; Abagyan RA J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363 [TBL] [Abstract][Full Text] [Related]
8. Approaches to solving the rigid receptor problem by identifying a minimal set of flexible residues during ligand docking. Anderson AC; O'Neil RH; Surti TS; Stroud RM Chem Biol; 2001 May; 8(5):445-57. PubMed ID: 11358692 [TBL] [Abstract][Full Text] [Related]
9. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function. Taylor RD; Jewsbury PJ; Essex JW J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007 [TBL] [Abstract][Full Text] [Related]
10. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example. Mahasenan KV; Li C J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736 [TBL] [Abstract][Full Text] [Related]
12. Towards in silico lead optimization: scores from ensembles of protein/ligand conformations reliably correlate with biological activity. Popov VM; Yee WA; Anderson AC Proteins; 2007 Feb; 66(2):375-87. PubMed ID: 17078091 [TBL] [Abstract][Full Text] [Related]
13. Matching chemistry and shape in molecular docking. Shoichet BK; Kuntz ID Protein Eng; 1993 Sep; 6(7):723-32. PubMed ID: 7504257 [TBL] [Abstract][Full Text] [Related]
14. Fully automated flexible docking of ligands into flexible synthetic receptors using forward and inverse docking strategies. Kämper A; Apostolakis J; Rarey M; Marian CM; Lengauer T J Chem Inf Model; 2006; 46(2):903-11. PubMed ID: 16563022 [TBL] [Abstract][Full Text] [Related]
15. Rational automatic search method for stable docking models of protein and ligand. Mizutani MY; Tomioka N; Itai A J Mol Biol; 1994 Oct; 243(2):310-26. PubMed ID: 7932757 [TBL] [Abstract][Full Text] [Related]