These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9569133)

  • 1. Shear stress related hemolysis and its modelling by mechanical degradation of polymer solutions.
    Pohl M; Samba O; Wendt MO; Vlastos G
    Int J Artif Organs; 1998 Feb; 21(2):107-13. PubMed ID: 9569133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical degradation of polyacrylamide solutions as a model for flow induced blood damage in artificial organs.
    Pohl M; Wendt MO; Koch B; Vlastos GA
    Biorheology; 2000; 37(4):313-24. PubMed ID: 11145077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemolysis in a laminar flow-through Couette shearing device: an experimental study.
    Boehning F; Mejia T; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2014 Sep; 38(9):761-5. PubMed ID: 24867102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Model fluids of blood for in vitro testing of artificial heart valves].
    Pohl M; Wendt MO; Koch B; Kühnel R; Samba O; Vlastos G
    Z Med Phys; 2001; 11(3):187-94. PubMed ID: 11668816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical estimation of blood damage in artificial organs.
    Goubergrits L; Affeld K
    Artif Organs; 2004 May; 28(5):499-507. PubMed ID: 15113346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear-Induced Hemolysis: Species Differences.
    Ding J; Niu S; Chen Z; Zhang T; Griffith BP; Wu ZJ
    Artif Organs; 2015 Sep; 39(9):795-802. PubMed ID: 25899978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro testing of artificial heart valves: comparison between Newtonian and non-Newtonian fluids.
    Pohl M; Wendt MO; Werner S; Koch B; Lerche D
    Artif Organs; 1996 Jan; 20(1):37-46. PubMed ID: 8645128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear stress related blood damage in laminar couette flow.
    Paul R; Apel J; Klaus S; Schügner F; Schwindke P; Reul H
    Artif Organs; 2003 Jun; 27(6):517-29. PubMed ID: 12780506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of blood viscosity on shear-induced hemolysis using a magnetically levitated shearing device.
    Krisher JA; Malinauskas RA; Day SW
    Artif Organs; 2022 Jun; 46(6):1027-1039. PubMed ID: 35030287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of shear stress-related blood damage in heart valve prostheses--in vitro comparison of 25 aortic valves.
    Giersiepen M; Wurzinger LJ; Opitz R; Reul H
    Int J Artif Organs; 1990 May; 13(5):300-6. PubMed ID: 2365485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of static pressure and shear rate on hemolysis of red blood cells.
    Yasuda T; Funakubo A; Miyawaki F; Kawamura T; Higami T; Fukui Y
    ASAIO J; 2001; 47(4):351-3. PubMed ID: 11482485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of energy dissipation rate as a predictor of mechanical blood damage.
    Faghih MM; Sharp MK
    Artif Organs; 2019 Jul; 43(7):666-676. PubMed ID: 30588644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of erythrocyte membrane tension for hemolysis prediction in complex flows.
    M Faghih M; Sharp MK
    Biomech Model Mechanobiol; 2018 Jun; 17(3):827-842. PubMed ID: 29299699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strain-based model for mechanical hemolysis based on a coarse-grained red blood cell model.
    Ezzeldin HM; de Tullio MD; Vanella M; Solares SD; Balaras E
    Ann Biomed Eng; 2015 Jun; 43(6):1398-409. PubMed ID: 25691396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leakage flow at mechanical heart valve prostheses: improved washout or increased blood damage?
    Steegers A; Paul R; Reul H; Rau G
    J Heart Valve Dis; 1999 May; 8(3):312-23. PubMed ID: 10399668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemolysis resulting from surface roughness under shear flow conditions using a rotational shear stressor.
    Maruyama O; Nishida M; Yamane T; Oshima I; Adachi Y; Masuzawa T
    Artif Organs; 2006 May; 30(5):365-70. PubMed ID: 16683954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prosthetic heart valves' mechanical loading of red blood cells in patients with hereditary membrane defects.
    Grigioni M; Caprari P; Tarzia A; D'Avenio G
    J Biomech; 2005 Aug; 38(8):1557-65. PubMed ID: 15958211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Approach for Assessing Turbulent Flow Damage to Blood in Medical Devices.
    Ozturk M; Papavassiliou DV; O'Rear EA
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27760246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractural characteristic evaluation of a microcapsule suspension using a rotational shear stressor.
    Maruyama O; Yamane T; Nishida M; Aouidef A; Tsutsui T; Jikuya T; Masuzawa T
    ASAIO J; 2002; 48(4):365-73. PubMed ID: 12141465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical blood traumatization by tubing and throttles in in vitro pump tests: experimental results and implications for hemolysis theory.
    Schima H; Müller MR; Tsangaris S; Gheiseder G; Schlusche C; Losert U; Thoma H; Wolner E
    Artif Organs; 1993 Mar; 17(3):164-70. PubMed ID: 8215941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.