These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 9569133)
41. Velocities, shear stresses and blood damage potential of the leakage jets of the Medtronic Parallel bileaflet valve. Zimmer R; Steegers A; Paul R; Affeld K; Reul H Int J Artif Organs; 2000 Jan; 23(1):41-8. PubMed ID: 12118836 [TBL] [Abstract][Full Text] [Related]
42. Prediction of hemolysis in turbulent shear orifice flow. Tamagawa M; Akamatsu T; Saitoh K Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954 [TBL] [Abstract][Full Text] [Related]
43. A viscoelastic model of shear-induced hemolysis in laminar flow. Arwatz G; Smits AJ Biorheology; 2013; 50(1-2):45-55. PubMed ID: 23619152 [TBL] [Abstract][Full Text] [Related]
45. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis. Nakamura M; Bessho S; Wada S Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912 [TBL] [Abstract][Full Text] [Related]
47. Erythrocyte destruction under periodically fluctuating shear rate: comparative study with constant shear rate. Hashimoto S Artif Organs; 1989 Oct; 13(5):458-63. PubMed ID: 2803057 [TBL] [Abstract][Full Text] [Related]
48. Application of drag-reducing polymer solutions as test fluids for in vitro evaluation of potential blood damage in blood pumps. Daly AR; Sobajima H; Olia SE; Takatani S; Kameneva MV ASAIO J; 2010; 56(1):6-11. PubMed ID: 20019596 [TBL] [Abstract][Full Text] [Related]
49. Modeling and prediction of flow-induced hemolysis: a review. Faghih MM; Sharp MK Biomech Model Mechanobiol; 2019 Aug; 18(4):845-881. PubMed ID: 30847662 [TBL] [Abstract][Full Text] [Related]
50. Integrated strategy for in vitro characterization of a bileaflet mechanical aortic valve. Susin FM; Espa S; Toninato R; Fortini S; Querzoli G Biomed Eng Online; 2017 Feb; 16(1):29. PubMed ID: 28209171 [TBL] [Abstract][Full Text] [Related]
51. The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Grigioni M; Daniele C; Morbiducci U; D'Avenio G; Di Benedetto G; Barbaro V Artif Organs; 2004 May; 28(5):467-75. PubMed ID: 15113341 [TBL] [Abstract][Full Text] [Related]
52. Mechanical stress activates platelets at a subhemolysis level: an in vitro study. Bakir I; Hoylaerts MF; Kink T; Foubert L; Luyten P; Van Kerckhoven S; Leunens V; Bollen H; Reul H; Meyns B Artif Organs; 2007 Apr; 31(4):316-23. PubMed ID: 17437501 [TBL] [Abstract][Full Text] [Related]
53. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models. Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371 [TBL] [Abstract][Full Text] [Related]
54. The effects of suspending medium viscosity on erythrocyte deformation and haemolysis in vitro. Morris DR; Williams AR Biochim Biophys Acta; 1979 Jan; 550(2):288-96. PubMed ID: 758949 [TBL] [Abstract][Full Text] [Related]
55. Principal stress analysis in LDA measurement of the flow field downstream of 19-mm Sorin Bicarbon heart valve. Barbaro V; Grigioni M; Daniele C; D'Avenio G Technol Health Care; 1998 Nov; 6(4):259-70. PubMed ID: 9924953 [TBL] [Abstract][Full Text] [Related]
56. Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium. Fischer TM Biophys J; 2007 Oct; 93(7):2553-61. PubMed ID: 17545241 [TBL] [Abstract][Full Text] [Related]