These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9569246)

  • 1. Evidence for two separate purinergic responses in Paramecium tetraurelia: XTP inhibits only the oscillatory responses to GTP.
    Mimikakis JL; Nelson DL
    J Membr Biol; 1998 May; 163(1):19-23. PubMed ID: 9569246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External GTP alters the motility and elicits an oscillating membrane depolarization in Paramecium tetraurelia.
    Clark KD; Hennessey TM; Nelson DL
    Proc Natl Acad Sci U S A; 1993 May; 90(9):3782-6. PubMed ID: 8387197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular GTP causes membrane-potential oscillations through the parallel activation of Mg2+ and Na+ currents in Paramecium tetraurelia.
    Clark KD; Hennessey TM; Nelson DL; Preston RR
    J Membr Biol; 1997 May; 157(2):159-67. PubMed ID: 9151657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillating response to a purine nucleotide disrupted by mutation in Paramecium tetraurelia.
    Mimikakis JL; Nelson DL; Preston RR
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):139-47. PubMed ID: 9461502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of SERCA pump inhibitors on chemoresponses in Paramecium.
    Wassenberg JJ; Clark KD; Nelson DL
    J Eukaryot Microbiol; 1997; 44(6):574-81. PubMed ID: 9435128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-protein modulators alter the swimming behavior and calcium influx of Paramecium tetraurelia.
    de Ondarza J; Symington SB; Van Houten JL; Clark JM
    J Eukaryot Microbiol; 2003; 50(5):349-55. PubMed ID: 14563173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of guanine, inosine, and xanthine nucleotides on beta(2)-adrenergic receptor/G(s) interactions: evidence for multiple receptor conformations.
    Seifert R; Gether U; Wenzel-Seifert K; Kobilka BK
    Mol Pharmacol; 1999 Aug; 56(2):348-58. PubMed ID: 10419554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemorepellents in Paramecium and Tetrahymena.
    Francis JT; Hennessey TM
    J Eukaryot Microbiol; 1995; 42(1):78-83. PubMed ID: 7537146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the polycation receptors of Paramecium tetraurelia and Tetrahymena thermophila.
    Robinette ED; Gulley KT; Cassity KJ; King EE; Nielsen AJ; Rozelle CL; Warren TJ; Morrow JM; Kuruvilla HG
    J Eukaryot Microbiol; 2008; 55(2):86-90. PubMed ID: 18318860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A circadian clock regulates sensitivity to cadmium in Paramecium tetraurelia.
    Hinrichsen RD; Tran JR
    Cell Biol Toxicol; 2010 Aug; 26(4):379-89. PubMed ID: 20108033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct interactions of G(salpha-long), G(salpha-short), and G(alphaolf) with GTP, ITP, and XTP.
    Liu HY; Seifert R
    Biochem Pharmacol; 2002 Aug; 64(4):583-93. PubMed ID: 12167477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ oscillations mediated by exogenous GTP in Paramecium cells: assessment of possible Ca2+ sources.
    Sehring IM; Plattner H
    Cell Calcium; 2004 Nov; 36(5):409-20. PubMed ID: 15451624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca(2+) current-deficient pawn mutants are promoted to queens during chronic depolarization of Paramecium tetraurelia.
    Preston RR; Hammond JA
    J Membr Biol; 1999 Oct; 171(3):245-53. PubMed ID: 10501832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic and genetic analysis of "Chameleon," a paramecium mutant with an enhanced sensitivity to magnesium.
    Preston RR; Hammond JA
    Genetics; 1997 Jul; 146(3):871-80. PubMed ID: 9215893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genetic dissection of the photophobic response of Paramecium tetraurelia.
    Hinrichsen R; Peters C
    Protist; 2013 May; 164(3):313-22. PubMed ID: 23465194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperpolarization- and depolarization-activated Ca2+ currents in Paramecium trigger behavioral changes and cGMP formation independently.
    Schultz JE; Guo Y; Kleefeld G; Völkel H
    J Membr Biol; 1997 Apr; 156(3):251-9. PubMed ID: 9096066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionally nonequivalent interactions of guanosine 5'-triphosphate, inosine 5'-triphosphate, and xanthosine 5'-triphosphate with the retinal G-protein, transducin, and with Gi-proteins in HL-60 leukemia cell membranes.
    Klinker JF; Seifert R
    Biochem Pharmacol; 1997 Sep; 54(5):551-62. PubMed ID: 9337071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell surface complexes ('cortices') isolated from Paramecium tetraurelia cells as a model system for analysing exocytosis in vitro in conjunction with microinjection studies.
    Lumpert CJ; Kersken H; Plattner H
    Biochem J; 1990 Aug; 269(3):639-45. PubMed ID: 2390058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of the ciliates tetrahymena and paramecium to vertebrate odorants and tastants.
    Rodgers LF; Markle KL; Hennessey TM
    J Eukaryot Microbiol; 2008; 55(1):27-33. PubMed ID: 18251800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of exocytosis by GTP analogues in adrenal chromaffin cells revealed by patch-clamp capacitance measurement.
    Burgoyne RD; Handel SE
    FEBS Lett; 1994 May; 344(2-3):139-42. PubMed ID: 8187872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.