These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 9569758)
21. Rotating sample system: an equivalent of a rotating electrode for microliter samples. Cserey A; Gratzl M Anal Chem; 1997 Sep; 69(18):3687-92. PubMed ID: 16646158 [TBL] [Abstract][Full Text] [Related]
22. Differential pulse voltammetric determination of eugenol at a pencil graphite electrode. Sağlam Ö; Dilgin DG; Ertek B; Dilgin Y Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():156-162. PubMed ID: 26706519 [TBL] [Abstract][Full Text] [Related]
23. Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices. Santhiago M; Wydallis JB; Kubota LT; Henry CS Anal Chem; 2013 May; 85(10):5233-9. PubMed ID: 23581428 [TBL] [Abstract][Full Text] [Related]
24. Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes. Roberts JG; Moody BP; McCarty GS; Sombers LA Langmuir; 2010 Jun; 26(11):9116-22. PubMed ID: 20166750 [TBL] [Abstract][Full Text] [Related]
25. Electrochemical reactions in subfemtoliter-droplets studied with plasmonics-based electrochemical current microscopy. Wang Y; Shan X; Cui F; Li J; Wang S; Tao N Anal Chem; 2015 Jan; 87(1):494-8. PubMed ID: 25479127 [TBL] [Abstract][Full Text] [Related]
27. Facile patterning of reduced graphene oxide film into microelectrode array for highly sensitive sensing. Li F; Xue M; Ma X; Zhang M; Cao T Anal Chem; 2011 Aug; 83(16):6426-30. PubMed ID: 21761929 [TBL] [Abstract][Full Text] [Related]
28. Imaging local electrochemical current via surface plasmon resonance. Shan X; Patel U; Wang S; Iglesias R; Tao N Science; 2010 Mar; 327(5971):1363-6. PubMed ID: 20223983 [TBL] [Abstract][Full Text] [Related]
29. Individual nanotube-based needle nanoprobes for electrochemical studies in picoliter microenvironments. Yum K; Cho HN; Hu J; Yu MF ACS Nano; 2007 Dec; 1(5):440-8. PubMed ID: 19206665 [TBL] [Abstract][Full Text] [Related]
30. Quantitative analysis and application of tip position modulation-scanning electrochemical microscopy. Edwards MA; Whitworth AL; Unwin PR Anal Chem; 2011 Mar; 83(6):1977-84. PubMed ID: 21322581 [TBL] [Abstract][Full Text] [Related]
31. Electrochemistry and voltammetric determination of colchicine using an acetylene black-dihexadecyl hydrogen phosphate composite film modified glassy carbon electrode. Zhang H Bioelectrochemistry; 2006 May; 68(2):197-201. PubMed ID: 16122990 [TBL] [Abstract][Full Text] [Related]
32. Discharge cavitation during microwave electrochemistry at micrometre-sized electrodes. Rassaei L; Nebel M; Rees NV; Compton RG; Schuhmann W; Marken F Chem Commun (Camb); 2010 Feb; 46(5):812-4. PubMed ID: 20087529 [TBL] [Abstract][Full Text] [Related]
33. Electrochemical behavior of gold nanoparticles modified nitrogen incorporated tetrahedral amorphous carbon and its application in glucose sensing. Liu A; Wu H; Qiu X; Tang W J Nanosci Nanotechnol; 2011 Dec; 11(12):11064-8. PubMed ID: 22409057 [TBL] [Abstract][Full Text] [Related]
34. Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: application to sensitive voltammetric determination of thioridazine. Shahrokhian S; Ghalkhani M; Adeli M; Amini MK Biosens Bioelectron; 2009 Jul; 24(11):3235-41. PubMed ID: 19443205 [TBL] [Abstract][Full Text] [Related]
35. Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Majid E; Hrapovic S; Liu Y; Male KB; Luong JH Anal Chem; 2006 Feb; 78(3):762-9. PubMed ID: 16448049 [TBL] [Abstract][Full Text] [Related]
37. Amperometry and cyclic voltammetry with carbon fiber microelectrodes at single cells. Mundroff ML; Wightman RM Curr Protoc Neurosci; 2002 May; Chapter 6():Unit 6.14. PubMed ID: 18428562 [TBL] [Abstract][Full Text] [Related]
38. Invariance of exocytotic events detected by amperometry as a function of the carbon fiber microelectrode diameter. Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F; Verchier Y Anal Chem; 2009 Apr; 81(8):3087-93. PubMed ID: 19290664 [TBL] [Abstract][Full Text] [Related]
39. Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles. Carrera P; Espinoza-Montero PJ; Fernández L; Romero H; Alvarado J Talanta; 2017 May; 166():198-206. PubMed ID: 28213223 [TBL] [Abstract][Full Text] [Related]
40. Microchip capillary electrophoresis with electrochemical detection. Zeng Y; Chen H; Pang DW; Wang ZL; Cheng JK Anal Chem; 2002 May; 74(10):2441-5. PubMed ID: 12038773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]