These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 9570009)
21. Quantal Ca2+ mobilization by ryanodine receptors is due to all-or-none release from functionally discrete intracellular stores. Cheek TR; Berridge MJ; Moreton RB; Stauderman KA; Murawsky MM; Bootman MD Biochem J; 1994 Aug; 301 ( Pt 3)(Pt 3):879-83. PubMed ID: 8053911 [TBL] [Abstract][Full Text] [Related]
22. Pharmacological characterization of inositol-1,4,5,-trisphosphate binding to membranes from retina and retinal cultures. López-Colomé AM; Lee I J Neurosci Res; 1996 Apr; 44(2):149-56. PubMed ID: 8723223 [TBL] [Abstract][Full Text] [Related]
23. Calcium release in HSY cells conforms to a steady-state mechanism involving regulation of the inositol 1,4,5-trisphosphate receptor Ca2+ channel by luminal [Ca2+]. Tanimura A; Turner RJ J Cell Biol; 1996 Feb; 132(4):607-16. PubMed ID: 8647892 [TBL] [Abstract][Full Text] [Related]
24. Direct inhibition of inositol-1,4,5-trisphosphate-induced Ca2+ release from brain microsomes by K+ channel blockers. Palade P; Dettbarn C; Volpe P; Alderson B; Otero AS Mol Pharmacol; 1989 Oct; 36(4):664-72. PubMed ID: 2554116 [TBL] [Abstract][Full Text] [Related]
25. The relationship between inositol trisphosphate receptor density and calcium release in brain microsomes. Joseph SK; Rice HL Mol Pharmacol; 1989 Mar; 35(3):355-9. PubMed ID: 2538712 [TBL] [Abstract][Full Text] [Related]
26. Luminal calcium regulates the inositol trisphosphate receptor of rat basophilic leukemia cells at a cytosolic site. Horne JH; Meyer T Biochemistry; 1995 Oct; 34(39):12738-46. PubMed ID: 7548027 [TBL] [Abstract][Full Text] [Related]
27. Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. Hirota J; Michikawa T; Miyawaki A; Takahashi M; Tanzawa K; Okura I; Furuichi T; Mikoshiba K FEBS Lett; 1995 Jul; 368(2):248-52. PubMed ID: 7628615 [TBL] [Abstract][Full Text] [Related]
28. Functional IP3- and ryanodine-sensitive calcium stores in presynaptic varicosities of NG108-15 (rodent neuroblastoma x glioma hybrid) cells. Rondé P; Dougherty JJ; Nichols RA J Physiol; 2000 Dec; 529 Pt 2(Pt 2):307-19. PubMed ID: 11101642 [TBL] [Abstract][Full Text] [Related]
29. Postnatal expression of the inositol 1,4,5-trisphosphate receptor in canine cerebellum. Volpe P; Sacchetto R; Alderson-Lang BH Int J Biochem; 1992 Oct; 24(10):1525-32. PubMed ID: 1327888 [TBL] [Abstract][Full Text] [Related]
30. Trypsinized cerebellar inositol 1,4,5-trisphosphate receptor. Structural and functional coupling of cleaved ligand binding and channel domains. Yoshikawa F; Iwasaki H; Michikawa T; Furuichi T; Mikoshiba K J Biol Chem; 1999 Jan; 274(1):316-27. PubMed ID: 9867846 [TBL] [Abstract][Full Text] [Related]
31. Mini-dystrophin expression down-regulates IP3-mediated calcium release events in resting dystrophin-deficient muscle cells. Balghi H; Sebille S; Mondin L; Cantereau A; Constantin B; Raymond G; Cognard C J Gen Physiol; 2006 Aug; 128(2):219-30. PubMed ID: 16847098 [TBL] [Abstract][Full Text] [Related]
32. Fast activation and inactivation of inositol trisphosphate-evoked Ca2+ release in rat cerebellar Purkinje neurones. Khodakhah K; Ogden D J Physiol; 1995 Sep; 487 ( Pt 2)(Pt 2):343-58. PubMed ID: 8558468 [TBL] [Abstract][Full Text] [Related]
33. Inositol 1,4,5-trisphosphate receptor and ryanodine receptor in the aging brain of Wistar rats. Martini A; Battaini F; Govoni S; Volpe P Neurobiol Aging; 1994; 15(2):203-6. PubMed ID: 7838292 [TBL] [Abstract][Full Text] [Related]
34. The effects of tetrahexyl ammonium cations (THA+) on inositol 1,4,5-trisphosphate-induced calcium release from porcine cerebellar microsomes: THA+ can induce calcium release selectively from the InsP3-sensitive calcium stores. Sayers LG; Michelangeli F Biochim Biophys Acta; 1993 Oct; 1152(1):177-83. PubMed ID: 8399297 [TBL] [Abstract][Full Text] [Related]
35. Intracellular calcium release resulting from mGluR1 receptor activation modulates GABAA currents in wide-field retinal amacrine cells: a study with caffeine. Vigh J; Lasater EM Eur J Neurosci; 2003 Jun; 17(11):2237-48. PubMed ID: 12814357 [TBL] [Abstract][Full Text] [Related]
36. Redox modulation of calcium entry and release of intracellular calcium by thimerosal in GH4C1 pituitary cells. Karhapää L; Titievsky A; Kaila K; Törnquist K Cell Calcium; 1996 Dec; 20(6):447-57. PubMed ID: 8985589 [TBL] [Abstract][Full Text] [Related]
37. Fast release of 45Ca2+ induced by inositol 1,4,5-trisphosphate and Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle: evidence for two types of Ca2+ release channels. Valdivia C; Vaughan D; Potter BV; Coronado R Biophys J; 1992 May; 61(5):1184-93. PubMed ID: 1318092 [TBL] [Abstract][Full Text] [Related]
38. Two inositol 1,4,5-trisphosphate binding sites in rat basophilic leukemia cells: relationship between receptor occupancy and calcium release. Watras J; Moraru I; Costa DJ; Kindman LA Biochemistry; 1994 Nov; 33(47):14359-67. PubMed ID: 7947846 [TBL] [Abstract][Full Text] [Related]
39. Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells. Poulsen JC; Caspersen C; Mathiasen D; East JM; Tunwell RE; Lai FA; Maeda N; Mikoshiba K; Treiman M Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):749-58. PubMed ID: 7741706 [TBL] [Abstract][Full Text] [Related]
40. Cross-signaling between L-type Ca2+ channels and ryanodine receptors in rat ventricular myocytes. Adachi-Akahane S; Cleemann L; Morad M J Gen Physiol; 1996 Nov; 108(5):435-54. PubMed ID: 8923268 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]