These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9570028)

  • 1. A developmental study of the dopamine D2R receptors in the human basal ganglia and thalamus.
    Meng SZ; Obonai T; Takashima S
    Early Hum Dev; 1998 Apr; 51(1):23-30. PubMed ID: 9570028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental and age-related changes of dopamine transporter, and dopamine D1 and D2 receptors in human basal ganglia.
    Meng SZ; Ozawa Y; Itoh M; Takashima S
    Brain Res; 1999 Oct; 843(1-2):136-44. PubMed ID: 10528120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A developmental expression of AMPA-selective glutamate receptor subunits in human basal ganglia.
    Meng SZ; Obonai T; Isumi H; Takashima S
    Brain Dev; 1997 Sep; 19(6):388-92. PubMed ID: 9339865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropathological characteristics and alteration of the dopamine D2 receptor in hypoxic-ischemic basal ganglia necrosis.
    Meng SZ; Isumi H; Takashima S
    Brain Dev; 1998 Mar; 20(2):98-104. PubMed ID: 9545180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in AMPA glutamate and dopamine D2 receptors in hypoxic-ischemic basal ganglia necrosis.
    Meng SZ; Ohyu J; Takashima S
    Pediatr Neurol; 1997 Sep; 17(2):139-43. PubMed ID: 9367294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic activation of striatal D1R and D2R cells differentially engages downstream connected areas beyond the basal ganglia.
    Grimm C; Frässle S; Steger C; von Ziegler L; Sturman O; Shemesh N; Peleg-Raibstein D; Burdakov D; Bohacek J; Stephan KE; Razansky D; Wenderoth N; Zerbi V
    Cell Rep; 2021 Dec; 37(13):110161. PubMed ID: 34965430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D1 and D2 dopamine receptors in perinatal and adult basal ganglia.
    Boyson SJ; Adams CE
    Pediatr Res; 1997 Jun; 41(6):822-31. PubMed ID: 9167195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons.
    Gurevich EV; Joyce JN
    Neuropsychopharmacology; 1999 Jan; 20(1):60-80. PubMed ID: 9885786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental expression of monocyte chemoattractant protein-1 in the human cerebellum and brainstem.
    Meng SZ; Oka A; Takashima S
    Brain Dev; 1999 Jan; 21(1):30-5. PubMed ID: 10082250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal expression gradients of the carbohydrate antigen (CD15) (Lewis X) during development of the human basal ganglia.
    Mai JK; Krajewski S; Reifenberger G; Genderski B; Lensing-Höhn S; Ashwell KW
    Neuroscience; 1999; 88(3):847-58. PubMed ID: 10363822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes.
    Borroto-Escuela DO; Wydra K; Pintsuk J; Narvaez M; Corrales F; Zaniewska M; Agnati LF; Franco R; Tanganelli S; Ferraro L; Filip M; Fuxe K
    Neural Plast; 2016; 2016():4827268. PubMed ID: 27872762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneously changes in striatum dopaminergic and glutamatergic parameters following hypoxic-ischemic neuronal injury in newborn piglets.
    Zhang YF; Wang XY; Guo F; Burns K; Guo QY; Wang XM
    Eur J Paediatr Neurol; 2012 May; 16(3):271-8. PubMed ID: 21723167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental characteristics of neuronal nitric oxide synthase (nNOS) immunoreactive neurons in fetal to adolescent human brains.
    Ohyu J; Takashima S
    Brain Res Dev Brain Res; 1998 Oct; 110(2):193-202. PubMed ID: 9748571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the globus pallidus D2 subfamily of dopamine receptors in pallidal immediate early gene expression.
    Marshall JF; Henry BL; Billings LM; Hoover BR
    Neuroscience; 2001; 105(2):365-78. PubMed ID: 11672604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NGF receptor (p75)-immunoreactivity in the developing primate basal ganglia.
    Kordower JH; Mufson EJ
    J Comp Neurol; 1993 Jan; 327(3):359-75. PubMed ID: 8440771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D2 dopamine receptor gene expression in the rat striatum during ontogeny: an in situ hybridization study.
    Guennoun R; Bloch B
    Brain Res Dev Brain Res; 1991 May; 60(1):79-87. PubMed ID: 1680582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reserpine increases Fos activity in the rat basal ganglia via a quinpirole-sensitive mechanism.
    Cole DG; Di Figlia M
    Neuroscience; 1994 May; 60(1):115-23. PubMed ID: 7914358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogeny of the striatal neurons expressing the D2 dopamine receptor in humans: an in situ hybridization and receptor-binding study.
    Brana C; Aubert I; Charron G; Pellevoisin C; Bloch B
    Brain Res Mol Brain Res; 1997 Sep; 48(2):389-400. PubMed ID: 9332736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Striatal-enriched protein tyrosine phosphatase regulates dopaminergic neuronal development via extracellular signal-regulated kinase signaling.
    Kim SY; Lee HJ; Kim YN; Yoon S; Lee JE; Sun W; Choi EJ; Baik JH
    Exp Neurol; 2008 Nov; 214(1):69-77. PubMed ID: 18708052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental immunohistochemistry of catalase in the human brain.
    Houdou S; Kuruta H; Hasegawa M; Konomi H; Takashima S; Suzuki Y; Hashimoto T
    Brain Res; 1991 Aug; 556(2):267-70. PubMed ID: 1933360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.