BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9570089)

  • 1. Predicting nucleic acid torsion angle values using artificial neural networks.
    Beckers ML; Melssen WJ; Buydens LM
    J Comput Aided Mol Des; 1998 Jan; 12(1):53-61. PubMed ID: 9570089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constrained nucleic acids (CNA). Part 2. Synthesis of conformationally restricted dinucleotide units featuring noncanonical alpha/beta/gamma or delta/epsilon/zeta torsion angle combinations.
    Le Clézio I; Gornitzka H; Escudier JM; Vigroux A
    J Org Chem; 2005 Mar; 70(5):1620-9. PubMed ID: 15730280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of nucleic acid backbone conformation by 1H NMR.
    Kim SG; Lin LJ; Reid BR
    Biochemistry; 1992 Apr; 31(14):3564-74. PubMed ID: 1373647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA sequence modulates the conformation of the food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline in the recognition sequence of the NarI restriction enzyme.
    Wang F; Elmquist CE; Stover JS; Rizzo CJ; Stone MP
    Biochemistry; 2007 Jul; 46(29):8498-516. PubMed ID: 17602664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational studies of nucleic acids: IV. The conformational energetics of oligonucleotides: d(ApApApA) and ApApApA.
    Pearlman DA; Kim SH
    J Biomol Struct Dyn; 1986 Aug; 4(1):69-98. PubMed ID: 2482750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The J-coupling restrained molecular mechanics (JrMM) protocol--an efficient alternative for deriving DNA endocyclic torsion angle constraints. Part II: Experimental application of the JrMM protocol.
    Lam SL; Au-Yeung SC
    J Biomol Struct Dyn; 1996 Apr; 13(5):815-25. PubMed ID: 8723776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlating the 31P NMR chemical shielding tensor and the 2J(P,C) spin-spin coupling constants with torsion angles ζ and α in the backbone of nucleic acids.
    Benda L; Sochorová Vokáčová Z; Straka M; Sychrovský V
    J Phys Chem B; 2012 Mar; 116(12):3823-33. PubMed ID: 22380464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone.
    Packer MJ; Hunter CA
    J Mol Biol; 1998 Jul; 280(3):407-20. PubMed ID: 9665845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining local conformational variations in DNA. Nuclear magnetic resonance structures of the DNA duplexes d(CGCCTAATCG) and d(CGTCACGCGC) generated using back-calculation of the nuclear Overhauser effect spectra, a distance geometry algorithm and constrained molecular dynamics.
    Metzler WJ; Wang C; Kitchen DB; Levy RM; Pardi A
    J Mol Biol; 1990 Aug; 214(3):711-36. PubMed ID: 2167379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning methods for protein torsion angle prediction.
    Li H; Hou J; Adhikari B; Lyu Q; Cheng J
    BMC Bioinformatics; 2017 Sep; 18(1):417. PubMed ID: 28923002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Monte Carlo method for generating structures of short single-stranded DNA sequences.
    Erie DA; Breslauer KJ; Olson WK
    Biopolymers; 1993 Jan; 33(1):75-105. PubMed ID: 8427940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational analysis of the 3'-5'-cyclic dinucleotide d less than pApA greater than by means of molecular mechanics.
    Blommers MJ; Slot HJ; van der Marel GA; van Boom JH; Hilbers CW
    J Biomol Struct Dyn; 1990 Oct; 8(2):233-51. PubMed ID: 2176505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational studies of nucleic acids: III. Empirical multiple correlation functions for nucleic acid torsion angles.
    Pearlman DA; Kim SH
    J Biomol Struct Dyn; 1986 Aug; 4(1):49-67. PubMed ID: 3271435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Watson-Crick base-pairing properties of nucleic acid analogues with stereocontrolled alpha and beta torsion angles (alpha,beta-D-CNAs).
    Dupouy C; Iché-Tarrat N; Durrieu MP; Rodriguez F; Escudier JM; Vigroux A
    Angew Chem Int Ed Engl; 2006 May; 45(22):3623-7. PubMed ID: 16639765
    [No Abstract]   [Full Text] [Related]  

  • 15. Hairpin loops consisting of single adenine residues closed by sheared A.A and G.G pairs formed by the DNA triplets AAA and GAG: solution structure of the d(GTACAAAGTAC) hairpin.
    Chou SH; Zhu L; Gao Z; Cheng JW; Reid BR
    J Mol Biol; 1996 Dec; 264(5):981-1001. PubMed ID: 9000625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network for predicting the stability of DNA/DNA duplexes.
    Liu X; Ma L; Cheng C; Wang Y; Miyajima H; Zhao Y
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(3):199-209. PubMed ID: 15892259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diastereoselective synthesis of a conformationally restricted dinucleotide with predefined alpha and beta torsional angles for the construction of alpha,beta-constrained nucleic acids (alpha,beta-CNA).
    Le Clézio I; Escudier JM; Vigroux A
    Org Lett; 2003 Jan; 5(2):161-4. PubMed ID: 12529130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threocytidines: Insight into the Conformational Preferences of Artificial Threose Nucleic Acid (TNA) Building Blocks in B3LYP Studies.
    Bednarko J; Stachurski O; Wielińska J; Kozakiewicz K; Liberek B; Nowacki A
    J Mol Graph Model; 2018 Mar; 80():157-172. PubMed ID: 29366882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of [d(GCGTATACGC)]2.
    Cheng JW; Chou SH; Salazar M; Reid BR
    J Mol Biol; 1992 Nov; 228(1):118-37. PubMed ID: 1447776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleic acid duplexes incorporating a dissociable covalent base pair.
    Gao K; Orgel LE
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14837-42. PubMed ID: 10611299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.