These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 9570427)
1. Different effects of calcium antagonists in a rat model of heart failure. Mulder P; Richard V; Thuillez C Cardiology; 1998; 89 Suppl 1():33-7. PubMed ID: 9570427 [TBL] [Abstract][Full Text] [Related]
2. Increased survival after long-term treatment with mibefradil, a selective T-channel calcium antagonist, in heart failure. Mulder P; Richard V; Compagnon P; Henry JP; Lallemand F; Clozel JP; Koen R; Macé B; Thuillez C J Am Coll Cardiol; 1997 Feb; 29(2):416-21. PubMed ID: 9014998 [TBL] [Abstract][Full Text] [Related]
3. Effect of calcium channel blockade or angiotensin-converting enzyme inhibition on structure of coronary, renal, and other small arteries in spontaneously hypertensive rats. Li JS; Schiffrin EL J Cardiovasc Pharmacol; 1996 Jul; 28(1):68-74. PubMed ID: 8797138 [TBL] [Abstract][Full Text] [Related]
4. Prevention of neointima formation by mibefradil after vascular injury in rats: comparison with ACE inhibition. Schmitt R; Clozel JP; Iberg N; Bühler FR Cardiovasc Drugs Ther; 1996 May; 10(2):101-5. PubMed ID: 8842500 [TBL] [Abstract][Full Text] [Related]
5. Effects of an angiotensin-converting enzyme inhibitor, a calcium antagonist, and an endothelin receptor antagonist on renal afferent arteriolar structure. Skov K; Fenger-Grøn J; Mulvany MJ Hypertension; 1996 Sep; 28(3):464-71. PubMed ID: 8794834 [TBL] [Abstract][Full Text] [Related]
6. Effects of the calcium channel antagonist mibefradil on haemodynamic and morphological parameters in myocardial infarction-induced cardiac failure in rats. Sandmann S; Spitznagel H; Chung O; Xia QG; Illner S; Jänichen G; Rossius B; Daemen MJ; Unger T Cardiovasc Res; 1998 Aug; 39(2):339-50. PubMed ID: 9798519 [TBL] [Abstract][Full Text] [Related]
7. Short-term hemodynamic effects of mibefradil in dogs with chronic heart failure: comparison with diltiazem. Shimoyama H; Sabbah HN; Tanimura M; Borzak S; Goldstein S J Pharmacol Exp Ther; 1998 May; 285(2):746-52. PubMed ID: 9580622 [TBL] [Abstract][Full Text] [Related]
8. Endothelin antagonism in end-organ damage of spontaneously hypertensive rats. Comparison with angiotensin-converting enzyme inhibition and calcium antagonism. Karam H; Heudes D; Bruneval P; Gonzales MF; Löffler BM; Clozel M; Clozel JP Hypertension; 1996 Sep; 28(3):379-85. PubMed ID: 8794820 [TBL] [Abstract][Full Text] [Related]
9. Early versus delayed angiotensin-converting enzyme inhibition in experimental chronic heart failure. Effects on survival, hemodynamics, and cardiovascular remodeling. Mulder P; Devaux B; Richard V; Henry JP; Wimart MC; Thibout E; Macé B; Thuillez C Circulation; 1997 Mar; 95(5):1314-9. PubMed ID: 9054865 [TBL] [Abstract][Full Text] [Related]
10. Effects of the calcium channel antagonist mibefradil on haemodynamic parameters and myocardial Ca(2+)-handling in infarct-induced heart failure in rats. Sandmann S; Min JY; Meissner A; Unger T Cardiovasc Res; 1999 Oct; 44(1):67-80. PubMed ID: 10615391 [TBL] [Abstract][Full Text] [Related]
11. Structural changes and cyclic GMP content of the aorta after calcium antagonism or angiotensin converting enzyme inhibition in renovascular hypertensive rats. Véniant M; Gray GA; Heudes D; Ménard J; Clozel JP J Hypertens; 1995 Jul; 13(7):731-7. PubMed ID: 7594436 [TBL] [Abstract][Full Text] [Related]
12. Protection of the arterial internal elastic lamina by inhibition of the renin-angiotensin system in the rat. Huang W; Alhenc Gelas F; Osborne-Pellegrin MJ Circ Res; 1998 May; 82(8):879-90. PubMed ID: 9576107 [TBL] [Abstract][Full Text] [Related]
13. Long-term survival and hemodynamics after endothelin-a receptor antagonism and angiotensin-converting enzyme inhibition in rats with chronic heart failure: monotherapy versus combination therapy. Mulder P; Boujedaini H; Richard V; Henry JP; Renet S; Münter K; Thuillez C Circulation; 2002 Aug; 106(9):1159-64. PubMed ID: 12196345 [TBL] [Abstract][Full Text] [Related]
15. The T-type calcium channel blocker mibefradil reduced interstitial and perivascular fibrosis and improved hemodynamic parameters in myocardial infarction-induced cardiac failure in rats. Sandmann S; Bohle RM; Dreyer T; Unger T Virchows Arch; 2000 Feb; 436(2):147-57. PubMed ID: 10755606 [TBL] [Abstract][Full Text] [Related]
16. Effects of mibefradil, a novel calcium channel blocking agent with T-type activity, in acute experimental myocardial ischemia: maintenance of ventricular fibrillation threshold without inotropic compromise. Muller CA; Opie LH; McCarthy J; Hofmann D; Pineda CA; Peisach M J Am Coll Cardiol; 1998 Jul; 32(1):268-74. PubMed ID: 9669280 [TBL] [Abstract][Full Text] [Related]
17. Cardioprotection by long-term ET(A) receptor blockade and ACE inhibition in rats with congestive heart failure: mono- versus combination therapy. Fraccarollo D; Bauersachs J; Kellner M; Galuppo P; Ertl G Cardiovasc Res; 2002 Apr; 54(1):85-94. PubMed ID: 12062365 [TBL] [Abstract][Full Text] [Related]
18. Effect of mibefradil on left ventricular diastolic function in patients with congestive heart failure. Muntinga HJ; van der Vring JA; Niemeyer MG; van den Berg F; Knol HR; Bernink PJ; van der Wall EE; Blanksma PK; Lie KI J Cardiovasc Pharmacol; 1996 May; 27(5):652-6. PubMed ID: 8859934 [TBL] [Abstract][Full Text] [Related]
19. Comparison of cardioprotective effects of mibefradil and ramipril in stroke-prone spontaneously hypertensive rats. Xia QG; Reinecke A; Dorenkamp M; Storz C; Bitterling H; Penz S; Cleutjens J; Daemen MJ; Simon R; Unger T Acta Pharmacol Sin; 2004 Jun; 25(6):763-8. PubMed ID: 15169629 [TBL] [Abstract][Full Text] [Related]
20. Calcium channel blockade limits cardiac remodeling and improves cardiac function in myocardial infarction-induced heart failure in rats. Sandmann S; Claas R; Cleutjens JP; Daemen MJ; Unger T J Cardiovasc Pharmacol; 2001 Jan; 37(1):64-77. PubMed ID: 11152376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]